
Workflow Enactment with Continuation and Future Objects

Dragos A. Manolescu
dam@micro-workflow.com

ABSTRACT
An increasing number of software developers are turning to work-
flow to separate the logic and the control aspects in their appli-
cations, thus making them more amenable to change. However, in
spite of recent efforts to standardize and provide reusable workflow
components, many developers build their own. This is a challeng-
ing endeavor and involves solving problems which seem incom-
patible with the object paradigm and current object-oriented pro-
gramming languages. In the context of an object-oriented workflow
framework, this paper demonstrates a novel approach that resolves
this impedance mismatch with techniques drawn from program-
ming language theory. This successful cross-pollination narrows
the gap between the results of decades of research in programming
languages and developers working hard to cope with change.

Categories and Subject Descriptors
D.1.5 [Software]: Programming Techniques—Object-oriented Pro-
gramming; D.3.3 [Software]: Language Constructs and Features—
Classes and objects, Frameworks

General Terms
Design, Languages

Keywords
Workflow, continuations, trampolined style, future objects, micro-
workflow.

1. INTRODUCTION
Business changes. Software must keep up with change at an af-

fordable cost. Programmers are currently tackling this challenge on
several fronts. From a methodology perspective, they are moving
towards lightweight, agile methodologies. From a programming
perspective, they are embracing new styles that facilitate change.
This latter trend has increased (among other things) the importance
of process support within applications in general, and of the sup-
porting technology (i.e., workflow) in particular. The recent adop-
tion of a workflow management facility by the Object Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

Group (OMG) shows a strong interest in workflow technology from
the object community [34].

This paper describes in detail some of the most interesting as-
pects of an object-oriented workflow framework written in Visual-
Works Smalltalk. However, as I will discuss later, the techniques
explained here (originally developed in Lisp and Scheme) are appli-
cable to an increasing number of languages. Therefore, the contri-
butions of this paper are relevant outside the Smalltalk community.
The paper has two goals. First, it shows one way of building basic
workflow support with objects. At first sight object and workflow
technologies seem incompatible: the formerdeemphasizes the flow
of control, while the latterexplicitly represents it. Likewise, while
most object-oriented languages implementsynchronous message
sends, workflow involvesasynchronous processing. This paper
provides a solution to this impedance mismatch. Second, the pa-
per demonstrates that concepts from programming languages (e.g.,
continuations, trampolined style, and futures) provide viable solu-
tions in the context of workflow management.

The paper has two parts. The first part begins with a discus-
sion of workflow in the context of object-oriented software devel-
opment, and then introduces micro-workflow, a workflow architec-
ture aimed at developers. The second part focuses on the design
and implementation of the micro-workflow components providing
basic workflow support. Using these components as a vehicle I
introduce techniques from programming language theory to work-
flow management.

The above structure targets two audiences. The first part of the
paper aims at developers who are building applications that must
accommodate business changes. Developers not familiar with work-
flow will learn what workflow is and how they could use it to fa-
cilitate change in their applications. Likewise, developers already
familiar with workflow will learn how to implement a lightweight
workflow core for use within applications. The second half of the
paper aims at object-oriented developers who are interested in tech-
niques applicable to workflow, but that might appear in other do-
mains. The workflow architecture presented in the first part pro-
vides the context for introducing them.

2. WHAT IS WORKFLOW?
Despite being around since the 1970s, workflow technology is

still a fuzzy area to many people. Some wrongfully regard it as a
novel idea, while others have very different interpretations of what
workflow means.

During the past few years a common workflow terminology and
standards have been on the agenda of several organizations, includ-
ing the Workflow Management Coalition (WfMC) and the OMG.
In the context of this paper, workflow coordinates activities per-

formed by variousparticipants1 towards a business goal—this view
is similar to WfMC’s definition of workflow. Coordination involves
activity ordering and the interdependencies between them, syn-
chronization with external events, and delegation toparticipants.
Examples include the billing process within a telecommunication
system, or the followup process for newborns with certain predis-
positions.

Let’s consider a short example that corresponds to a simplified
workflow from the medical world—the treatment of strep throat.
The strep throat workflow begins with a patient who suspects that
she may have strep and goes to the doctor to seek medical atten-
tion. The doctor examines the patient and tests whether she has
strep throat. If the results are positive, the doctor prescribes a treat-
ment. Based on the patient’s medical records, the doctor can treat
strep throat in two different ways. If the patient is not allergic to
penicillin (an antibiotic), the doctor prescribes this treatment. Oth-
erwise, he prescribes the sulfa drug. Next a nurse takes the pre-
scription and instructs the patient how to follow the treatment. If
the prescription contains penicillin, she also warns the patient about
the possibility of an allergic reaction to antibiotics. The patient
goes home and starts taking the pills. Two days after the beginning
of the treatment the nurse checks with the patient to see whether
there have been any improvements. She also reminds the patient to
continue taking the pills even if her condition has improved. At the
end of the treatment, the nurse checks the state of the patient again.

This workflow involves two participants, the doctor and the nurse.
They provide medical knowledge and expertise. The doctorexam-
ines the patient andprescribesthe treatment. Likewise, the nurse
administersthe prescription andchecksthe patient’s condition.

But is this really that different from what happens in an object
system, where programs consist of objects which perform compu-
tations in response to messages? Here are some of the characteris-
tics that set workflow management apart:

• Workflow involves long-running, slow business processes.2

Mortgages, for example, typically last for 15 or 30 years.

• The workflow participants carrying out the activities can be
software (e.g., objects, components, applications) as well as
people (as in the strep throat example). Some of these activ-
ities execute asynchronously.

• Workflow users may want to take control over activity order-
ing of the process as it unfolds. For example, the strep throat
patient may develop an allergic reaction, in which case the
workflow doesn’t proceed as above.

• The workflow system saves history information about the
workflows it executes. People have many uses for this in-
formation, including auditing, process analysis and improve-
ment. The workflow system may also use it for recovery.

• Workflow users can monitor the progress of the entire pro-
cess. Knowing who is doing what at any moment helps with
resource allocation.

3. WHY WORKFLOW?
Workflow is no longer just “some sort of planned document rout-

ing” [35]. Workflow technology and process support has shifted

1Throughout this document, the terminology of the Workflow
Management Coalition (WfMC) standards appears inslanted fonts.
2I use the term business process to avoid the confusion with oper-
ating system processes. Note, however, that workflow is applicable
outside the business realm.

from end-user applications to a key ingredient of the “networked
economy” [37]. Currently workflow lies at the center of enterprise
application architectures. The two characteristics that make work-
flow a valuable technology for building agile applications are flow-
and domain-independence.

3.1 Flow-Independence
Software developers have long recognized the benefits of sepa-

rating different concerns. For example, data management and user
interface represent two of the aspects that many applications have
to deal with. Good developers aim at building software such that
every design decision is encapsulated into a component. This lets
them revisit individual decisions and make changes without affect-
ing other parts of the application.

Over 20 years ago Kowalski argued that separating thewhat,
which specifies the “knowledge to be used in solving problems,”
from the how, which determines “the problem solving strategies
by means of which that knowledge is used,” will make programs
more readily adapted to new problems, thus improving modifia-
bility [24]. However, most developers intermix these two aspects
within their software because doing so is intuitive (requiring little
analysis). The intertwined control and logic (referred to as flow-
dependency in the context of workflow management [25]) becomes
a hindrance when developers change one or the other.

Kowalski recommended that programming languages provide ex-
plicit support for the separation of the logic and the control aspects:

Computer programs will be more often correct, more
easily improved, and more readily adapted to new prob-
lems when programming languages separate logic and
control. (R. Kowalski [24])

However, programming languages haven’t really evolved in this di-
rection. Although aspect-oriented programming (AOP) focuses on
separating cross-cutting concerns (i.e., aspects) [22], aspect sys-
tems like Aspect-J don’t regard the control flow as an AOP-style
aspect. Software developers looking for ways to separate the flow
between an application’s objects/components from the application
are turning to workflow products like for example Versata Process
Logic Engine [41] or Drala Workflow Engine [9].

As databases and user interface frameworks remove data- and
UI-dependencies from application code, workflow makes applica-
tionsflow-independent. Software developers implement the control
aspect of their applications with workflow technology, which re-
moves the knowledge of activity sequencing and their interdepen-
dencies from application objects. In effect, changing the control no
longer affects the logic (i.e., flow-independence). Additionally, ap-
plication objects can become more reusable since they make fewer
assumptions about the control context in which they operate.

The sketch from Figure 1 illustrates the key difference between
flow-dependent and flow-independent applications. A flow-depen-
dent application scatters the control among the objects implement-
ing the logic. Changing one aspect typically impacts the other. In
contrast, a flow-independent application makes a clear separation
between its control and logic, organizing the workflow and appli-
cation objects into two tiers. This separation of concerns facilitates
changes in either tier and improves reuse. Workflow experts predict
that the discovery of benefits of flow-independence will foster the
use of workflow management systems for building flexible appli-
cations [25].

Additionally, workflow allows application developers to use work-
flow-specific features that otherwise would be too expensive to hand
craft every time they build a new application. Some examples in-
clude the ability to take over the execution ordering at run time,

Application

Object1
Object2

Object3

Application objects
mix logic and
control

Application

ApplicationObject1

ApplicationObject2

WorkflowObject1 WorkflowObject2

WorkflowObject3

Logic

Control

Figure 1: Flow-dependent (left) and flow-independent (right) applications.

or the ability to know the current state of the process (in workflow
parlance these are known as manual intervention and monitoring).

3.2 Domain-Independence
The partitioning typical of flow-independent applications (Fig-

ure 1, right) keeps the workflow (along with the business process
support that runs it) outside the application domain. Thus apply-
ing workflow to a particular application domain requires providing
components that perform domain-specific work. This characteristic
makes workflow technology applicable to a large number of appli-
cation domains.

For example, Jackson [20] and Georgakopoulos and colleagues [15]
discuss examples from the telecommunications industry. Dinkhoff
and colleagues [7] apply workflow to administrative processes for
property management. Vossen and Weske [42] use workflow tech-
nology for geoprocessing applications. McClatchey and colleagues [29]
and Kováks [23] employ workflow in the context of the Compact
Muon Solenoid high energy physics experiment. Yang and Pa-
pazoglou [43] identify workflow as part of the reference archi-
tecture for interoperable e-commerce applications. Leymann and
Roller [25] discuss the application of workflow technology for soft-
ware distribution, security management, and business-process-orien-
ted systems management. The key point here is that a wide range
of application domains can benefit from workflow technology.

4. THE MICRO-WORKFLOW ARCHITEC-
TURE

To accommodate the requirements of object-oriented developers
who need workflow functionality within their applications, a work-
flow system must [26]: (1) Allow developers to pick and choose
the workflow features they need; (2) Let them customize existing
features and add new ones through object and class composition;
(3) Integrate with custom components, subsystems, and frameworks;
and (4) Support incremental integration with existing systems and
applications. However, most workflow products are incompatible
with these requirements. Current workflow systems are heavy-
weight and package a comprehensive set of features in an all-or-
nothing manner. The narrow purpose design of traditional work-
flow architectures limits their applicability to the types of appli-

cations for which they have been tailored. For example, Muth and
colleagues [31] observe that “most workflow management systems,
both products and research prototypes, are rather monolithic and
aim at providing full fledged support for the widest possible appli-
cation spectrum.” Additionally, current workflow systems are hard
to integrate with other environments.

To achieve the goals listed above I have designed micro-workflow,
a new workflow architecture [26]. Micro-workflow bridges the
gap between the workflow functionality object-oriented developers
need in their applications and the functionality provided by tradi-
tional workflow management systems. The combination of micro-
kernel and object-oriented architectural styles [5], and ideas from
compositional software reuse solve many of the problems of tra-
ditional workflow architectures. The resulting architecture can be
integrated within object-oriented applications, can be tailored to
specific domains, and was designed from the ground up to accom-
modateorganic growth[4].

At the focal point of the micro-workflow architecture, a light-
weightcoreprovides basic workflow functionality, allowing devel-
opers to define and execute workflows.Additional componentsim-
plement advanced workflow features like monitoring, history, man-
ual intervention, worklists, federated workflow, persistence, and so
on. This represents a radical departure from the traditional work-
flow architectures. Figure 2 sketches the structure of the micro-
workflow architecture.

As the topic of this paper lies on the border between workflow
and programming languages, note that the key ideas of this ap-
proach (i.e., lightweight core and organic growth) are in line with
recent research on workflow architectures [30, 16] and trends in
programming language design:

From now on, a main goal in designing a language
should be to plan for growth. The language must start
small, and the language must grow as the set of users
grows. (G. Steele [38])

I have implemented the micro-workflow architecture as an object-
oriented framework in VisualWorks Smalltalk [6], with GemStone/S [14]
(an object-oriented persistent store) and OpenTalk (a distributed ap-
plication architecture) for persistence and distribution [26]. The

Execution Process

Monitoring

History

Persistence

Manual
intervention

Worklist

Federated
workflow

Synchro

Additional
Components

Core

Figure 2: The micro-workflow architecture

following sections focus on the core of the micro-workflow frame-
work, particularly on the process and execution components (see
Figure 2). The components for advanced workflow features are be-
yond the scope of this paper.

5. THE DESIGN AND IMPLEMENTATION
OF THE MICRO-WORKFLOW CORE

The decomposition into classes typical of object-oriented ap-
plications deemphasizes the control flow and distributes it among
different objects. Thus, the global control flow and behavior are
less visible than in procedural programs. Therefore, one of the
challenges of building an object-oriented workflow system lies in
providing abstractions that maintain an explicit representation of
the control flow without violating the principles of good object-
oriented design.

One way to implement a workflow system would be to add work-
flow-specific features to a general-purpose programming language.
Languages with metaobject protocols like CLOS and Smalltalk are
amenable to domain-specific extensions [21]. However, I have
adopted a different approach. Instead of changing an existing lan-
guage (and thus creating a dialect), micro-workflow lies above the
implementing language (Smalltalk). Although this approach has
several liabilities (Noble has analyzed its tradeoffs in a different
context [33]), here its benefits outweigh them. First, the imple-
mented system (i.e., workflow) is under programmers’ control. Sec-
ond, it fosters integrability with existing systems and applications
(one of the initial goals). Finally, it yields language portability, thus
making the contributions of this paper relevant to object-oriented
developers regardless of the language and environment they use.

5.1 The Process Model
At the core of every workflow system, a process model provides

key process abstractions and their relationships. Workflow users
define workflows with these abstractions.

Most workflow systems use one of the three types of process
models: activity-, artifact-, or communication-based; a combina-
tion of these (i.e., a hybrid model) is also possible. The models
focus on different aspects:

• The activity-based process modelprovides key abstractions
that capture how to coordinate the process activities. It shows
which activities execute as the workflow unfolds in time.

• Theartifact-based process modelfocuses on the artifacts that
are created, modified or used by the workflow. The focus is

on data flow, and the control flow emerges as the process
generates new artifacts.

• Finally, thecommunication-based process modelis centered
around agreements between participants. This model focuses
on how the participants fulfill their commitments and ad-
vance the process.

The explicit representation of control flow makes an activity-
based process model appropriate for separating the control from the
logic. Micro-workflow uses this process model. The primary con-
cept of the activity-based process model is atask, which is a multi-
entity collaborative activity. A task consists ofactivities, each of
which is an atomic unit of work performed by a workflowpartici-
pant.

The activity-based model represents workflows with directed graphs
calledactivity networks. One way to organize the networks is to
place activities in the network nodes with the data passed between
activities on the arcs connecting these nodes. Figure 3 shows a
workflow definition consisting of 6 activity nodes. Although con-
ceptually some activity nodes use application objects, these are not
part of the definition.

Workflow enactment corresponds to workflow execution, i.e., at
run time the workflow system instantiates a workflow definition,
creating aworkflow case. For an activity-based process model, the
workflow enactment mechanism navigates the activity graph pass-
ing the control flow to nodes according to the workflow definition.
For example, a sequence node passes the control to its subtrees se-
quentially, in a predefined order (e.g., from left to right). Likewise,
a conditional node passes the control to its unique subtree only if
the condition associated with it is satisfied. Thus, navigation de-
pends on the types of activity nodes, and the workflow data. The
navigation begins in the root node and continues until the enact-
ment mechanism completes the workflow, or until the user aborts
execution. For example, the execution of the workflow depicted in
Figure 3 begins with the node labeledSequence1 and ends with
the node labeledPrimitive4.

The micro-workflow framework represents each node of the work-
flow definition with an activity object. Several types of activity ob-
jects provide a basic set of control structures—primitive, sequence,
conditional, repetition, etc. For example, the workflow from Fig-
ure 3 consists of 4 primitives and 2 sequences. As typical of white-
box object-oriented frameworks, developers add new structures through
inheritance [36].

5.2 Workflow Enactment with Message Sends
A simple and intuitive way to implement workflow navigation

is through message sends between activity objects [27]. In the ex-
ample from Figure 3,Sequence1 starts execution by sending the
executeActivity message to its first step,Sequence2. In turn, this
executes its first stepPrimitive1 by sending it theexecuteActivity
message, and so on.

This implementation translates workflow enactment into a chain
of executeActivity messages. Each message must preserve the cur-
rent control context; upon its return, program execution should con-
tinue from the point following the message send. Therefore mes-
sage sends incur an accumulation of control context until they re-
turn. The diagram from Figure 4 shows the sequence of messages
corresponding to the enactment of the workflow example from Fig-
ure 3. The control context corresponding to eachexecuteActivity
message (left to right solid arrow) must be preserved until the mes-
sage returns (right to left dashed arrow). The control context grows
with the number of chained messages, as the navigation moves
from the initialexecuteActivity message.

Sequence1

Sequence2 Primitive4Primitive3

Primitive1 Primitive2

ApplicationObject1 ApplicationObject2 ApplicationObject3 ApplicationObject4

Control tier
Logic tier

Figure 3: Activity network; the sequence nodes execute their children left-to-right. The application objects from the logic tier are
not part of the workflow definition.

Programming languages (Smalltalk for the implementation dis-
cussed here) typically preserve the control context on the call stack.
The context is pushed on the stack just before the control passes to
the receiver of the message, and popped once the message com-
pletes execution. In the example from Figure 3 this means that the
executeActivity message sent toSequence1 doesn’t return until its
three steps complete execution. Likewise, theexecuteActivity mes-
sage thatSequence1 sends to its first stepSequence2 doesn’t re-
turn until the latter’s two steps complete execution. In other words,
this implementation fires off the enactment mechanism with a mes-
sage send thatdoesn’t return until the workflow completes execu-
tion. The stack of the implementing language holds the control
context throughout workflow execution.

In spite of chained messages being quite common in object sys-
tems, the enactment mechanism presented here has problems in the
context of workflow. The problems stem from the tight coupling
between the implemented system (i.e., workflow) and the imple-
menting language. Most programming languages provide only in-
direct access to the call stack. In other words, programmers can’t
extract or manipulate the control context associated with the work-
flow. This limitation hinders implementing workflow features like
recovery and manual changes:

• If the computer executing the workflow crashes, the call stack
is gone unless you can save it. This requires the ability to
extract the workflow control context from the programming
language call stack.

• Sometimes workflow users want to take over activity order-
ing, overriding the workflow definition. This requires the
ability to manipulate the call records on the stack.

The solution lies in separation, a widely-used design operation [3].
This involves building an enactment mechanism that no longer uses
the call stack to save the workflow control context; in other words,
it factors the management of workflow control context out of the

implementing system’s call mechanism. A separate workflow stack
can provide this separation; I discussed this solution elsewhere [26].
The next section presents an alternative without an explicit work-
flow stack.

5.3 Workflow Enactment with Continuation
Objects

The chained message sends of the solution presented in the pre-
vious section are responsible for the accumulation of control con-
text. The enactment mechanism presented in this section breaks
the chained message sends with continuation objects. As I will dis-
cuss later, the solutionuses continuation objects without language
support for continuations, and thus is language-neutral.

A continuation represents work that has to be done. Consider the
strep throat treatment example from Section 2. The first activity of
the workflow involves the doctor, who examines the patient and
tests whether she has strep throat. A continuation corresponding to
this step is a function that takes one argument and carries out the
remainder of the process—prescribing the treatment depending on
the test results and on the patient’s allergies; following up with the
patient; and closing the case. The argument of this function would
be the outcome of the first step—in this case, the test results. Lan-
guage designers have used continuations to implement interpreters,
backtracking, multi-threading, exceptions, compilation, and opti-
mization [39, 11, 2]. Here continuations eliminate the growth of
control context associated with cascaded message sends, and lay
the groundwork for implementing dynamic changes.

The continuation-based enactment mechanism executes the work-
flow in discrete steps, each of which corresponds to an activity
object. Instead of executing an action, activity objects build and
return continuation objects. These objects represent a reification
of the processing that should be carried out in each activity node.
For example, a sequence activity no longer responds to anexecute-
like message by executing its steps. Instead, it creates a continua-
tion object that will carry out the sequential execution of each step

executeActivity

executeActivity

executeActivity

executeActivity

executeActivity

executeWorkflow

sequence1 sequence2 primitive1 primitive2 primitive3 primitive4 AppObj1

doSomething

controlContext(sequence1)

controlContext(sequence1)
+ controlContext(sequence2)

controlContext(sequence1)
+ controlContext(sequence2)

Control Logic

Figure 4: Activity map navigation through message sends between the activity nodes. ChainedexecuteActivity: messages cause the
growth of the control context. For simplicity, only one application object is shown in the logic tier.

when supplied with a control context. Therefore, continuation ob-
jects represent an abstraction of the control context associated with
each activity. Workflow enactment takes place in a loop that iter-
ates over continuations and supplies them with the control context.
Developers familiar with design patterns can regard the continua-
tions as command objects [12]. Command objects also factor out
the control, but typically they’re not used in the chained fashion
typical of continuation-passing style.

Ganz, Friedman, and Wand [13] call the above techniquetram-
polined style, and describe its use for implementing multithread-
ing. The trampoline (i.e., a loop) drives the entire computation
by bouncing from one continuation to the next. In the context of
micro-workflow, the trampolined style replaces the chain of mes-
sage sends with a single message send from the trampoline to the
executing activity node. This translates into limiting the amount
of control context that the enactment mechanism accumulates as it
navigates the activity map. The diagram from Figure 5 sketches
this situation for the example workflow from Figure 3.

5.4 Asynchronous Message Sends with Future
Objects

Although most developers building workflow select an object-
oriented language that supports threads, popular languages have
minimal support for concurrency. Unlike full-fledged concurrent
languages [19], general-purpose programming languages like Small-
talk or Java implement message sends in a synchronous manner.

In other words, upon sending a message, the sender waits until
the receiver processes it and returns. However, synchronous pro-
cessing is not suitable for workflow. Workflow participants may
respond to requests asynchronously. Typically this happens when
workflows involve actions from humans, external systems, or ob-
jects/components that are not available continuously. Additionally,
some workflow participants may take a long time to complete pro-
cessing. If messages are synchronous, once the enactment mech-
anism sends a message to an object representing one of these par-
ticipants, it must wait until the processing completes. To deal with
these circumstances a workflow system must support asynchronous
message sends from the workflow object to the application ob-
ject. Since typically the implementing object-oriented language
provides only synchronous messages, this requirement represents
another obstacle to building a workflow system with object tech-
nology.

Micro-workflow supports asynchronous messages with future ob-
jects, a technique from concurrent programming languages [17, 1,
40]. Future objects provide placeholders for objects whose identity
is determined after the future objects representing them are created.
An asynchronous message returns to the sender immediately, with-
out waiting for the receiver to complete processing. However, the
return value is a future object instead of the real result of the oper-
ation. Once the real result becomes available, it replaces the future
transparently [32].

For example, assume that a workflow activity involves the result

executeWorkflow

sequence1 sequence2 primitive1 primitive2 primitive3 primitive4trampoline

continuationWith:

continuationWith:

continuationWith:

continuationWith:

continuationWith:

continuationWith:

continuationWith:

continuationWith:

continuationWith:

controlContext(trampoline)

controlContext(trampoline)

controlContext(trampoline)

Figure 5: Activity map navigation, trampolined style; note the absence of chained message sends. For simplicity, only the objects on
the control tier are shown.

of a long batch job. With synchronous messaging, the enactment
mechanism sends a message to an object from the logic tier re-
questing the batch job. This message starts the job, but it doesn’t
return the control to the enactment mechanism until the batch job
finishes. With asynchronous messaging, the enactment mechanism
receives a future object in response to its request and continues ex-
ecution. The batch job starts executing in a separate thread; upon
its completion, the result object replaces the future returned in its
place.

The above mechanism maintains the appearance of synchronous
message sends. However, what happens if other objects attempt
to use a future before it has been replaced with the result object
returned from the logic tier? Message sends to future objects indi-
cate that the workflow has reached a point where it involves objects
which are not yet available. In response to these messages, fu-
tures suspend the execution within the workflow domain until the
asynchronously-produced application objects requested to process
the message become available.

The solution described above involves two tricky aspects. First,

future objects require the ability to replace an object with another
such that all references to the replaced object point to the replace-
ment. Second, futures require the ability to trap message sends
to the future object and suspend them until the future object is re-
placed. Reflective facilities like the ones available in Smalltalk–80 [10]
provide elegant solutions for both requirements. Alternatives that
don’t rely so heavily on reflection but introduce additional objects
are also viable (e.g. forwarding proxies). I’ll present my solution in
the context of the activity type that uses futures, in Section5.6.1.3
First let’s look at the implementation of the trampoline.

5.5 Implementing Trampolined Workflow En-
actment

At the heart of the enactment mechanism, theWorkflow class
provides the loop driving the computation. This class represents

3The micro-workflow worklist component also uses the asyn-
chronous invocation mechanism to add support for human workers.
This paper doesn’t cover the worklist component; I have discussed
it elsewhere [26].

workflow definitions and provides the means to execute them. Pro-
grammers start aworkflow case through sending theexecute mes-
sage to an instance of this class. Workflow execution uses a slotted
environment (like Smalltalk’sIdentityDictionary) for data flow. The
enactment mechanism provides this environment to each continua-
tion as it passes control to it. In turn, the continuation obtains the
domain objects it needs from the environment; some continuations
may also extend the environment by adding new slots. In effect,
this scheme pushes the data through the workflow.

The executeWith: message implements the trampoline. Each
step processes the continuation at the top of a continuation FIFO
queue and puts the result (also a continuation) back on the queue.
The loop exits when it reaches a particular continuation that marks
that there’s nothing else to do. Here’s the relevant Smalltalk code:

Workflow>>executeWith: aContext
| k |
k := self firstContinuation.
[k shouldStop] whileFalse: [k := self bounce: k with: aContext].
^k applyContinuationIn: aContext

Workflow>>bounce: k with: aContext
kqueue nextPut: (k applyContinuationIn: aContext).
^kqueue next

The micro-workflow core uses several types of continuations cor-
responding to each activity type. Their base classContinuation de-
fines the trampoline interface:

Smalltalk.Microworkflow defineClass: #Continuation
superclass: #Core.Object
indexedType: #none
private: false
instanceVariableNames: ’continuation workflow ’
classInstanceVariableNames: ’’
imports: ’’
category: ’Workflow-Execution’

Continuation>>applyContinuationIn: aContext
^self subclassResponsibility

Continuation>>shouldStop
^false

InitialContinuation marks the beginning of the computation. i.e.,
there’s nothing else to do with the context passed to it as the argu-
ment ofapplyContinuationIn:. It reimplements theshouldStop test
message accordingly. The enactment mechanism introduces an in-
stance ofInitialContinuation in the loop when it starts executing a
workflow. Once the loop exits,InitialContinuation responds to (the
final) applyContinuationIn: by returning its argument—the slotted
environment for data flow. This represents the return value of the
trampoline.

The code of the key messages implemented byInitialContinuation
follows:

InitialContinuation>>shouldStop
^true

InitialContinuation>>applyContinuationIn: aContext
^aContext

5.6 A Process Model with Continuations
Each type of activity node builds and returns a different con-

tinuation to the trampoline. The activity-specific processing takes

place in these continuations, in response to theapplyContinuation:
message.

Two parallel class hierarchies provide the functionality required
to define and execute workflows. The first hierarchy belongs to the
process realmand provides the abstractions for the activity-based
process model. Developers use instances of these classes to define
workflows. At the root of this hierarchy, theActivity abstract class
defines the interface used for navigating the workflow definition:

Activity>>continuationWith: k
^self subclassResponsibility

The second hierarchy belongs to theenactment realmand pro-
vides the continuations that encapsulate activity-specific execution
mechanisms.

TheContinuation superclass described in the previous section de-
fines only the trampoline interface (applyContinuationIn:). The fol-
lowing examples show the implementation of three control struc-
tures (primitive, sequence, and conditional) by specializing this
class.

5.6.1 Primitive
A Primitive is an abstraction of a piece of work performed by an

object from the logic tier. Instances of this class handle the exe-
cution of application-specific actions through delegation to appli-
cation objects from the logic tier. They also have the possibility of
pulling Workflow Relevant Data (i.e., application-specific informa-
tion) into the workflow runtime.

In the process realm, thePrimitive class holds the information
required to send a message to an application object, crossing the
boundary between logic and control. This consists of the object’s
slot name, the message, its arguments, and the result slot name
(which is optional, to accommodate messages without return val-
ues). In response tocontinuationWith:, thePrimitive returns a con-
tinuation of the appropriate type.

Primitive>>continuationWith: k
| rk |
rk := k makePrimitiveContinuation.
rk

subject: subject;
selector: selector;
arguments: arguments;
result: result.

^rk

In the enactment realm thePrimitiveContinuation class imple-
ments the corresponding execution mechanism. The delegation to
application objects uses the asynchronous invocation mechanism
and thus depends on future objects.

As Section 5.4 has mentioned, future objects require the abil-
ity to transparently replace an object with another, and to inter-
cept message sends. My implementation of future objects uses
several reflective facilities available in Smalltalk–80. Note, how-
ever, that the implementation described here is otherwise language-
independent.

The replacement of a future object with a result object relies
on Smalltalk’soneWayBecome: message. The virtual machine re-
places the receiver of this message with its argument such that all
references to the receiver (i.e., future object) point now to the ar-
gument (i.e., return object). Note that a similar mechanism could
also be supplied by the implemented system (thus in a language-
neutral manner) by updating the appropriate slot of the workflow
environment and enforcing a single point of access.

To intercept messages addressed to result objects I have tailored
the message dispatch mechanism of theFuture class. Instances of
this class have no inherited behavior (in Smalltalk their superclass
is nil). Consequently, thedoesNotUnderstand: mechanism traps the
messages that require the availability of the result object and delays
their processing. The key aspects of this implementation of future
objects follow.

Smalltalk.Microworkflow defineClass: #Future
superclass: nil
indexedType: #none
private: false
instanceVariableNames: ’semaphore ’
classInstanceVariableNames: ’’
imports: ’’
category: ’Workflow-Support’

Future>>doesNotUnderstand: aMessage
self semaphore wait.

^self perform: aMessage selector withArguments: aMes-
sage arguments

Workflow>>replaceWithWorkflowRelevantData: anObject
|localSemaphore signalsToSend|
localSemaphore := self semaphore.
signalsToSend := self waitingProcesses.
self oneWayBecome: anObject.
signalsToSend timesRepeat: [localSemaphore signal]

Future class>>asyncPerform: aSelector with: arguments on: anOb-
ject

| future |
future := Future new.

[| return |
return := arguments notNil

ifTrue: [anObject perform: aSelector with: arguments]
ifFalse: [anObject perform: aSelector].

future replaceWithWorkflowRelevantData: return]
fork.

^future

In response to theapplyContinuationIn: message, the continu-
ations returned by primitive activity nodes obtain the application
object from the workflow environment and send the message in a
separate thread, or delegate the asynchronous processing to theFu-
ture class.

Primitive>>applyContinuationIn: aContext
| target |
target := aContext at: subject.
result isNil

ifTrue: [self asyncExecuteOn: target]
ifFalse: [aContext at: result put: (self asyncExecuteAn-

dReturnFrom: target)].
^self continuation

Primitive>>asyncExecuteOn: target
[arguments isNil

ifTrue: [target perform: selector]
ifFalse: [target perform: selector with: arguments]]

fork

Primitive>>asyncExecuteAndReturnFrom: target

^Future asyncPerform: selector with: arguments on: target

Note thatPrimitive performs application-specific work whereas
other types of activity nodes merely coordinate the computation.
Therefore,Primitive instances can appear only as leaf nodes in the
activity map.applyContinuationIn: returns the caller’s continuation,
which is available to all continuation classes as an instance variable
of the Continuation abstract class. This return value provides the
context that requested the application domain action.

5.6.2 Sequence
Sequence represents an activity that has a number of steps, each

of which is another activity. Software developers use instances of
this class to specify a temporal ordering between workflow activi-
ties. The enactment mechanism navigates the steps sequentially.

In the process realmSequence is a subclass ofActivity that rep-
resents a composite [12], with other activities as its components.
This property is key for the hierarchical decomposition of work-
flows, which allows developers to split a workflow definition into
subworkflows. Subworkflows break down a workflow definition
into pieces that may be reused. At run time the enactment mech-
anism treats the workflow and its subworkflows as a whole—they
all execute as a singleworkflow case.

Sequence preserves the temporal ordering between its steps by
the means of anOrderedCollection. Developers add steps through
theadd: message, in the order in which the enactment mechanism
should execute them. In response tocontinuationWith:, Sequence
returns aSequenceContinuation initialized with its steps.

Sequence>>add: anActivity
steps add: anActivity

Sequence>>continuationWith: k
| rk |
rk := k makeSequenceContinuation.
rk steps: steps readStream.
^rk

SequenceContinuation represents the sequence control context
in the enactment realm. In response toapplyContinuationIn: it re-
turns the continuation of the next step. Once it executes its last
step,applyContinuationIn: returns the caller’s continuation—i.e.,
the control context that required the execution of the sequence of
activities.

SequenceContinuation>>applyContinuationIn: aContext
steps atEnd

ifTrue: [^self continuation]
ifFalse: [^self continuationForStep: steps next]

SequenceContinuation>>continuationForStep: anActivity
^anActivity continuationWith: self

Note that since instances ofSequence are composite activities,
they can’t be leaf nodes in the activity map representing the work-
flow definition.

5.6.3 Conditional
A Conditional enables developers to alter the control flow. At run

time instances of this class determine how the enactment mecha-
nism navigates the activity map based onWorkflow Control Data.
They implement a control structure of the typeIF condition
THEN activity1 ELSE activity2.

In the process realm, theConditional class holds the information
required to branch based on data from the workflow environment.

This consists of the slot name for theWorkflow Control Data, and
the activities for the two branches. In response tocontinuationWith:,
this activity type returns a properly initializedConditionalContinu-
ation.

Conditional>>continuationWith: k
| rk |
rk := k makeConditionalContinuation.
rk

subject: subject;
thenBranch: self thenBranch;
elseBranch: self elseBranch.

^rk

Note that not both branches are required. When theactivity2
branch is missing, the conditional corresponds to anIF condition
THEN activity control structure (e.g., a guarded command). Like-
wise, when theactivity1 branch is missing, the conditional cor-
responds to anUNLESScondition activity control structure.
The branch accessors return aNullActivity object if a branch has not
been specified. This is a concreteActivity subclass which responds
to continuationWith: by returning the parent continuation.

Conditional>>elseBranch
^elseBranch isNil ifTrue: [NullActivity new] ifFalse: [elseBranch]

Conditional>>thenBranch
^thenBranch isNil ifTrue: [NullActivity new] ifFalse: [thenBranch]

NullActivity>>continuationWith: k
^k

In the enactment realm theConditionalContinuation fetches the
Workflow Control Data from the runtime and takes one branch or
the other depending on its value. Like for other composite activities
(e.g., sequence), this involves building the appropriate continuation
and returning it to the trampoline.

ConditionalContinuation>>applyContinuationIn: aContext
^((aContext at: subject) ifTrue: [thenBranch] ifFalse: [elseBranch])

continuationWith: continuation

5.7 Summary
The enactment mechanism presented above uses continuations

to reify the control flow. Continuation objects abstract the control
context associated with the activities of a workflow. Programmers
can manipulate these objects directly. This makes dealing with long
running jobs feasible, and facilitates implementing the workflow
features that involve full access to the control context (i.e., history,
recovery, manual changes/ad hoc workflow, etc.).

6. LANGUAGE REQUIREMENTS
The micro-workflow components described in the previous sec-

tions employ techniques typically used in the context of functional
and concurrent programming languages. The enactment mecha-
nism usescontinuation objectsto break chained message sends,
and thus prevents the growth of control context. Likewise, the pro-
cess model usesfuture objectsto provide an asynchronous invo-
cation mechanism on top of synchronous message sends. I have
shown a Smalltalk implementation for these components. Can ob-
ject-oriented developers who use other languages leverage these
techniques? What kind of language features are required to im-
plement a micro-workflow architecture? The answer to these ques-
tions determines what language features developers should look for

if they want to use micro-workflow in their applications. It also
shows language designers what features they should consider for
new languages.

Trampolined style workflow enactment doesn’t require language
support for continuations. The continuation objects used by the
workflow enactment mechanism are in fact command objects [12].
As such they rely on polymorphism. Therefore, the micro-workflow
execution component is practical for developers regardless of what
object-oriented language they use.

Future objects require some language support. Reflective capa-
bilities like Smalltalk’soneWayBecome: provide an elegant way of
replacing an object with another and updating all references trans-
parently. Forwarding proxies can provide a similar mechanism in
a language-neutral manner. However, the ability to intercept mes-
sage sends to future objects requires access to the message send-
ing mechanism of the implementing language. In other words, the
micro-workflow process component requires reflection.

To summarize, developers who want to implement workflow en-
actment with continuation and future objects in a general-purpose
programming language need reflective capabilities. Although re-
flection has been around for many years, popular languages like
Java have started adding the type of reflection capabilities discussed
here only recently (e.g., Java’s dynamic proxies, introduced with
JDK 1.3, let developers create objects that selectively forward or
intercept invocations). Therefore, as language designers continue
to grow and refine the reflective capabilities of their languages, the
above techniques are becoming accessible to a wider audience.

7. CONCLUSION
Adapting software to evolving business requirements is hard and

thus expensive. Although people have recognized that flow-indepen-
dence—the separation of the logic and control aspects—makes ap-
plications easier to modify and change, most programming lan-
guages do not support it. In fact, with the distribution of control
among different classes, the object paradigm goes in the oppo-
site direction. Therefore, an increasing number of developers have
started to implement the control aspect within their applications
with workflow. As a sign of this trend, workflow has recently been
at the focus of intense attention from the OMG.

Unfortunately, most workflow architectures have been designed
under different assumptions and are ill-suited for integration within
applications. Consequently, developers who seek lightweight and
customizable workflow functionality must hand-craft their own so-
lutions. This is not trivial. Additionally, several characteristics of
workflow (e.g., explicit representation of control flow and asyn-
chronous processing) seem incompatible with the object paradigm
and with current object-oriented languages. Is there an impedance
mismatch between object and workflow technologies?

In this paper I’ve discussed some of the most interesting aspects
of implementing basic workflow support with object technology. I
have introduced micro-workflow, a lightweight workflow architec-
ture. Micro-workflow aims at object-oriented developers and rep-
resents a radical departure from traditional workflow architectures.
More importantly, I’ve shown that techniques specific to program-
ming languages provide answers to the impedance mismatch be-
tween workflow and objects. Just as continuation and future objects
are good for building programming languages, they’re also good
for implementing workflow enactment. Finally, I have discussed
what kind of language features developers implementing workflow
might need to look for when they select a language. I’ve also iden-
tified the kind of features language designers should consider for
new languages aimed at developers building agile software in gen-
eral, and lightweight workflow functionality in particular.

8. ACKNOWLEDGMENTS
Bill Burdick, Brian Foote, Daniel Friedman, Adrian Kunzle, and

Rich MacDonald have read and commented on drafts of this paper.
I am grateful to them all.

9. REFERENCES
[1] G. A. Agha.Actors—A Model of Concurrent Computation is

Distributed Systems. The MIT Press, Cambridge,
Massachusetts, 1986.

[2] A. W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[3] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. SEI Series in Software Engineering.
Addison-Wesley, 1998.

[4] F. P. Brooks.The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1995.

[5] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal.Pattern-Oriented Software Architecture—A System
of Patterns. John Wiley & Sons, July 1996.

[6] Cincom, Inc. Cincom Smalltalk. On the Web athttp://
www.cincom.com/scripts/smalltalk.dll/index.asp.

[7] G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka.
Entity-Relationship Approach–ER’94, Business Modelling
and Re-engineering, chapter Business Process Modeling in
the Workflow Management EnvironmentLeu, pages 46–63.
Number 881 in Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[8] A. Doğaç, L. Kalinichenko, M. T. Özsu, and A. Sheth,
editors.Workflow Management Systems and Interoperability,
volume 164 ofNATO Advanced Science Institutes (ASI),
Series F: Computer and Systems Sciences. Springer-Verlag,
August 1998.

[9] Drala Software, Inc. Drala workflow engine. Available from
http://www.dralasoft.com/products/workflow/
index.html.

[10] B. Foote and R. E. Johnson. Reflective facilities in
Smalltalk–80. InProceedings of OOPSLA’89. ACM, 1989.

[11] D. P. Friedman, M. Wand, and C. T. Haynes.Essentials of
Programming Languages. The MIT Press, Cambridge, MA,
second edition, 2001.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns—Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[13] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined
style. InProc. International Conference on Functional
Programming, pages 18–27, Paris, September 1999. ACM
Press.

[14] GemStone Systems. GemStone/S Smalltalk Application
Server. On the Web at
http://www.gemstone.com/products/s/index.html.

[15] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview
of workflow management: From process modeling to
workflow automation infrastructure.Distributed and Parallel
Databases, an International Journal, 3:119–153, 1995.
Available on the Web at
ftp://ftp.gte.com/pub/dom/reports/GEOR95a.ps.

[16] C. J. Hagen.A Generic Kernel for Reliable Process Support.
PhD thesis, Swiss Federal Institute of Technology, Zürich,
Switzerland, 1999.

[17] R. Halstead, Jr. MultiLISP: A language for concurrent
symbolic computation.ACM Transactions on Programming
Languages and Systems, 7:501–538, October 1985.

[18] N. Harrison, B. Foote, and H. Rohnert, editors.Pattern
Languages of Program Design 4. Software Patterns Series.
Addison-Wesley, 2000.

[19] Y. Ishikawa and M. Tokoro. Orient84/k: An object-oriented
concurrent programming language for knowledge
representation, 1987.

[20] M. Jackson and G. Twaddle.Business Process
Implementation–Building Workflow Systems.
Addison-Wesley, 1997. ISBN 0-201-177684.

[21] G. Kiczales and J. des Rivieres.The art of the metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991.

[22] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
ECOOP ’97—Object-Oriented Programming 11th European
Conference, Jyväskylä, Finland, volume 1241, pages
220–242. Springer-Verlag, New York, NY, 1997.

[23] Z. Kováks.The Integration of Product Data with Workflow
Management Through a Common Data Model. PhD thesis,
Faculty of Computer Studies and Mathematics, University of
the West of England, Bristol, Apr. 1999.

[24] R. Kowalski. Algorithm = Logic + Control.Communications
of the ACM, 22(7):424–436, July 1979.

[25] F. Leymann and D. Roller.Production Workflow—Concepts
and Techniques. Prentice-Hall, Upper Saddle River, New
Jersey, 2000.

[26] D.-A. Manolescu.Micro-Workflow: A Workflow Architecture
Supporting Compositional Object-Oriented Software
Development. PhD thesis, University of Illinois,
Urbana-Champaign, October 2000. Available as Computer
Science Technical Report UIUCDCS-R-2000-2186. On the
Web fromhttp://micro-workflow.com/.

[27] D.-A. Manolescu and R. E. Johnson. A micro workflow
framework for compositional object-oriented software
development. OOPSLA’99 Workshop on the Implementation
and Application of Object-Oriented Workflow Management
Systems II, Nov. 1999. Available on the Web from
http://micro-workflow.com/.

[28] R. C. Martin, D. Riehle, and F. Buschmann, editors.Pattern
Languages of Program Design 3. Software Patterns Series.
Addison-Wesley, October 1997.

[29] R. McClatchey, J.-M. L. Goff, N. Baker, W. Harris, and
Z. Kovács.A Distributed Workflow and Product Data
Management Application for the Construction of Large Scale
Scientific Apparatus, pages 18–34. Volume 164 of Doğaç
et al. [8], August 1998.

[30] P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum.
Mentor-lite: Integrating light-weight workflow management
systems within business environments (extended abstract),
October 1998. Available on the Web from
http://www-dbs.cs.uni-sb.de/~mlite/.

[31] P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum.
Workflow history management in virtual enterprises using a
light-weight workflow management system. InProc. 9th
International Workshop on Research Issues in Data
Engineering, Sydney, Australia, March 1999. Available on
the Web fromhttp://www-dbs.cs.uni-sb.de/~mlite/.

[32] J. Noble. Arguments and results.The Computer Journal,
43(6):439–450, July 2000.

[33] J. Noble.Prototype-based Object System, chapter 5. In
Harrison et al. [18], 2000.

http://www.cincom.com/scripts/smalltalk.dll/index.asp
http://www.cincom.com/scripts/smalltalk.dll/index.asp
http://www.dralasoft.com/products/workflow/index.html
http://www.dralasoft.com/products/workflow/index.html
http://www.gemstone.com/products/s/index.html
ftp://ftp.gte.com/pub/dom/reports/GEOR95a.ps
http://micro-workflow.com/
http://micro-workflow.com/
http://www-dbs.cs.uni-sb.de/~mlite/
http://www-dbs.cs.uni-sb.de/~mlite/

[34] Workflow management facility specification. OMG
Document Number bom/98–03–01, 1998. Available on the
Web at
ftp://ftp.omg.org/pub/docs/bom/98-03-01.pdf.

[35] C. Petrie and S. Sarin. Controlling the flow.IEEE Internet
Computing, 4(3):34–36, May–June 2000.

[36] D. Roberts and R. Johnson.Evolving Frameworks—A
Pattern Language for Developing Object -Oriented
Frameworks, chapter 26. In Martin et al. [28], October 1997.

[37] A. P. Sheth, W. van der Aalst, and I. B. Arpinar. Processes
driving the networked economy.IEEE Concurrency, pages
18–31, July–September 1999.

[38] G. L. Steele. Growing a language. InAddendum to the 1998
proceedings of the conference on Object-oriented
Programming, Systems, Languages, and Applications, New
York, NY, 1998. ACM Press.

[39] G. L. Steele and G. J. Sussman. Lambda—the ultimate
imperative. MIT AI Memo No. 353, March 1976.

[40] K. Taura, S. Matsuoka, and A. Yonezawa. ABCL/f: A
future-based polymorphic typed concurrent object-oriented
language—its design and implementation. InProceedings of
the DIMACS workshop on Specification of Parallel
Algorithms, 1994.

[41] Versata, Inc. Versata process logic engine. Available from
http://www.versata.com/products/inSuite/logic.
addon.html.

[42] G. Vossen and M. Weske.The WASA Approach to Workflow
Management for Scientific Applications, pages 145–164.
Volume 164 of Dŏgaç et al. [8], August 1998.

[43] J. Yang and M. P. Papazoglou. Interoperation support for
electronic business. 43(6):39–47, June 2000.

ftp://ftp.omg.org/pub/docs/bom/98-03-01.pdf
http://www.versata.com/products/inSuite/logic.addon.html
http://www.versata.com/products/inSuite/logic.addon.html

	Introduction
	What is Workflow?
	Why Workflow?
	Flow-Independence
	Domain-Independence

	The Micro-Workflow Architecture
	The Design and Implementation of the Micro-Workflow Core
	The Process Model
	Workflow Enactment with Message Sends
	Workflow Enactment with Continuation Objects
	Asynchronous Message Sends with Future Objects
	Implementing Trampolined Workflow Enactment
	A Process Model with Continuations
	Primitive
	Sequence
	Conditional

	Summary

	Language Requirements
	Conclusion
	Acknowledgments
	REFERENCES -9pt

