
Informed Search Using Equivalent-Class Templates�

Dragoş-Anton Manolescu Todd E. Morgan
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

fmanolesc,temorgang@cs.uiuc.edu

Abstract
Many of the search techniques used in AI were devel-
oped, studied and/or optimized in the context of game
playing. Game playing demands efficient methods and
has the advantage that the testing and evaluation of dif-
ferent implementations is straightforward, for it requires
playing the game. This paper provides a case study of an
informed search technique applied for a non-adversarial
game (triangular board Peg Game). The performance of
the method is compared with other strategies that were
tried. In addition, conclusions about the peg game are
presented.

1 Introduction

One of the AI techniques used extensively in computer
game playing is search. Although human game-playing
relies on pattern-based strategies, most computer game-
playing systems do not. Instead, from any given state
these systems typically generate a tree of possible moves
from which the best possible move is chosen. Exhaus-
tive search will yield an answer, although as the size of
a search tree is often-times large, the amount of compu-
tation required is unacceptable. One other solution is to
use a heuristic search that explores only those regions of
interest in the search tree.

The rest of this paper presents a solution to the
Peg Game. The solution uses a combination of two
strategies—pattern-based search and heuristic search.
The first section of the paper introduces the game and

�Proceedings of the 5th ISCA Conference (pages 197–201), edited
by F. C. Harris, Jr. June 1996, Reno, Nevada, USA.

describes the problem statement. The second section
covers some search techniques used in AI programs that
deal with games. The third section presents different
search strategies that were tried and ends with a detailed
overview of the proposed combined approach. The paper
concludes with a summary and explains how this strategy
could be used to solve other problems.

1.1 Problem description

Although the Peg Game has several different variants,
they are all similar with respect to the way the board is set
up and how they evolve towards the end of the game. The
board has a number of holes which can be either empty or
occupied by pegs. In order to move a peg, it has to jump
(in straight line) over an occupied hole (i.e. another peg)
and be inserted into a free hole. The peg from the mid-
dle hole is then removed from the board. Therefore, each
move removes one peg from the board. The game starts
with exactly one hole empty at random, and the goal is to
remove all pegs but one. This is not an easy task, consid-
ering the constraints imposed by the board geometry as
well as the choice of valid moves.

Figure 1 depicts the board for the Peg Game (equilat-
eral triangle with 5 holes on each side, 15 holes total),
some possible moves from a given state, and the labeling
convention. This particular geometry implies several in-
teresting properties (some of which appeared evident dur-
ing experiments with various search techniques):

� The game ends at most after 14 moves when there is
only one peg on the board, or before that when there
are no other possible moves; the former corresponds



Second Line

Third Line

Fourth Line

0,0

1,0 1,1

2,0 2,1 2,2

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3 4,4

Figure 1: Peg game board

to a winning game and the latter to a stalled game.
Therefore, the depth of the game tree is at most 14.

� The number of possible moves at each step is not
constant. This can be observed in Figure 2 which
shows how the number of possible moves evolves
during several winning games. Therefore, the game
tree has a variable branching factor with a maximum
degree 9.

� There is a high degree of symmetry. Based on this,
the total of 15 different initial situations can be re-
duced to just 4, as shown in Table 1.

� A search in the game tree could generate a succes-
sion of 14 moves that would leave just one peg on
the board. The search can be either an exhaustive
one (i.e. search blindly until a solution is found) or
an optimized search that minimizes the search space
according to some heuristic. The key point here is to
find the right heuristic that will efficiently guide the
search.

1.2 Other Approaches

Some of the better known games which have been
attempted using AI techniques include Connect-Four,
Draughts, Othello, and Backgammon [3]. Each of these

Starting position Equivalent starting positions

(0,0) (4,0) (4,4)
(1,0) (1,1) (3,0) (4,1) (3,3) (4,3)
(2,0) (2,2) (4,2)
(2,1) (3,1) (3,2)

Table 1: Equivalence by symmetry

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

N
um

be
r 

of
 p

os
si

bl
e 

m
ov

es

Game step

"moves-00.dat"
"moves-10.dat"
"moves-20.dat"
"moves-32.dat"

Figure 2: Variance of branching factor during the Peg
Game



games is most-suited to a particular approach, some of
which share several characteristics with our own domain,
the Peg Game. Others have been “solved” with techniques
that could perhaps apply also to the Peg Game, but remain
for the moment a subject of future research (i.e. neural
networks and genetic algorithms). Among those simi-
lar in approach to the Peg Game are Connect-Four and
Draughts.

A Connect-Four playing program called VICTOR [5],
relied on a set of strategic rules which were developed by
the authors after extensive experimentation with the game.
These rules defined optimal moves in any given situation,
and could be combined in pre-determined groups. With
this method, they were able to create an approach which
did not break the game into distinct phases, such as an
opening-move or an end-game. The Peg Game lends itself
very well to this type of approach.

The other game we found with a solution similar to
ours was Draughts. Smeets and Putter [6] developed a
technique called the Signature Method, where evaluation
functions mapped board states onto very limited ranges
(typically [�1;1]), which were combined in multidimen-
sional lookup tables to determine the value of a given
move. These tables also allowed the program to learn
from previous games. The domain of the Peg Game
is simple enough that it was unnecessary to incorporate
learning into our solution, but the idea of limited-range
evaluation functions coordinated well with that of tem-
plates.

The two techniques mentioned earlier as possibili-
ties for future Peg Game research, neural networks and
genetic algorithms, have been successfully applied in
backgammon [7] and Othello [8]. Both these programs
performed very well in their classes, indicating the poten-
tial for applying novel techniques in traditional AI game-
playing domains.

2 Early approaches

The basic technique used for the Peg Game is hill-
climbing—for a detailed description, see [1] and [2].
It relies on a heuristic function that ranks different
game states such that the ones which are closer to the
solution get explored first. It is clear that the efficiency
of the search depends on how well the heuristic function

evaluates different board states. The rest of this section
describes four different heuristics that we have tried for
the Peg Game problem.

Approach 1: The first heuristic presented relies on the
observation that the pegs have to be clustered together
and not spread on the board, for moves are only possible
as long as there is an adjacent peg to jump over. A board
state is characterized by a number which is computed in
the following way:

HEURISTIC 1:
score=0
foreach peg on the board
score=score+number of adjacent pegs

endfor

Therefore, states that keep the pegs together are ranked
before the ones where the pegs are scattered on the board.

Approach 2: A second heuristic is obtained by
combining the previous one with properties derived from
the board shape. From Figure 1 it is clear that there are
just 2 possible moves from each corner of the board.
Avoiding these positions could cut off some branches in
the search tree where the game will stall, and therefore
the size of the tree decreases. The board states in which
the pegs are clustered together and away from the corners
receive high scores.

HEURISTIC 2:
score=0
foreach peg on the board
score=score+number of adjacent pegs

endfor
foreach corner of the board
if corner is free then
score=score+1
endif

endfor

Approach 3: A third heuristic, which again uses the
idea of clustering, directs the pegs to one side of the
board. For each side, a weighted sum that takes into
account the number of pegs on the side as well as the



pegs on the adjacent line is computed and the maximum
of the 3 values is returned as the board’s score.

HEURISTIC 3:
score1=0
score2=0
score3=0
foreach side of the board
scorei=w1*number of pegs on the side+

w2*number of pegs on the adjacent line
endfor
max(score1,score2,score3)

Experimenting with these functions, the properties dis-
cussed in section 1.1 became evident, as well as the fol-
lowing results:

� Starting from any position on the board, there are at
least two different solutions

� The last peg on the board of a complete solution is in
the middle of one side

Approach 4: In response to the dependence between
performance (of the previous functions) and the starting
position, the fourth heuristic implements separate func-
tions optimized for the equivalent classes from Table 1.
Each board state is assigned a score that is computed as
the sum of key positions.

HEURISTIC 4:
case start
eq(0,0) : return sum keypos(0,0)
eq(1,0) : return sum keypos(1,0)
eq(2,0) : return sum keypos(2,0)
else : return sum keypos(2,1)
endcase

In the previous description, eq(i,j) is true whenever
start is a member of the equivalence class (i; j)—see
Table 1—and sum keypos(i,j) returns the sum of the
pegs from the key positions corresponding to the equiva-
lence class (i; j).

Table 2 gives the performance of these heuristics in
terms of number of nodes visited in the game tree. Al-
though board symmetry reduces the number of starting

Starting position Heuristic
1 2 3 4

0,0 6633 6636 352 14
4,0 6633 6636 6794 20
4,4 6461 6464 6807 185

1,0 6636 6636 6794 195
1,1 6461 6464 6794 24515
3,0 6633 6636 562 352
4,1 6456 6456 6807 24526
3,3 6624 6624 354 673
4,3 6456 5467 562 24522

2,0 85 24 15 46
2,2 85 19 15 17079
4,2 907 30 91 2557

2,1 2803 2803 7656 596
3,1 2818 2818 7704 425
3,2 2818 2820 7670 360

Table 2: Early approaches: Performance in terms of num-
ber of nodes explored

positions to just four, the functions perform differently.
All the starting positions from the same equivalence class
are listed together. This behaviour is a consequence of
the fact that the possible board states are generated in a
deterministic manner.

3 Final approach

As can be seen in Table 2, certain starting positions re-
sulted in a much more focused, and therefore smaller,
search. Starting from the middle position of any side, we
were able to find solutions within 100 nodes, as opposed
to over 6000 for the other cases. This led us to investigate
other methods of guiding the search.

The final approach we used takes into account the sym-
metry of the board, allowing us to use the principle of “di-
vide and conquer” to split the original problem into four
smaller problems, one for each of the equivalence classes
(e.g. the symmetric starting positions). By treating each
of these cases separately, we created customized heuris-
tics.



The equivalence-class templates specify board patterns
that the search should follow in the search tree. There
is a template for the first 11 of the 14 game steps. A
board state is compared against the corresponding tem-
plate and if it matches, the heuristic function returns a
positive value. Otherwise, it means that an unproductive
branch has been reached and the function returns zero.
The idea behind the templates is that they do not give
lockstep sequences of moves; rather, they indicate a gen-
eral direction in which the search should continue. In this
way the templates guide the search towards a solution,
therefore decreasing the number of nodes explored.

Each template is a set of 11 assertions; there are no as-
sertions after step 11 as there are just 3 pegs left, and the
search space is so small that exhaustive search suffices.
For each step of the game, these assertions must hold in
order to consider that state for further expansion. An ex-
ample is given below1:

1. A position from the middle of a side is
free

2. Three positions of the same side are free
3. Two positions in the center are free
4. A second line is free
5. The middle of a side is free
6. A third line is free
7. A fourth line is free
8. Four positions are free on a side
9. Two positions are free on the side

opposite to the starting position
10. Three positions are free on the side

opposite to the starting position
11. The three positions in the center are

free

The equivalence-class templates method outperforms
the methods discussed previously for three of the four
equivalence classes. It appears that this method does
not achieve the same performance as the others when the
game starts from one of the three middle positions—(2,1),
(3,1) and (3,2). A possible explanation for this behaviour
is that we are not using a template general enough to cover
all these situations. However, the overall performance of
the method is better—see Table 3.

1The actual templates are implemented in Common Lisp.

Starting position Template heuristic

0,0 23
4,0 120
4,4 125

1,0 82
1,1 93
3,0 279
4,1 333
3,3 322
4,3 322

2,0 532
2,2 571
4,2 1060

2,1 1027
3,1 89
3,2 31

Table 3: Template heuristic: Performance in terms of
number of nodes explored

4 Conclusion

This paper presents an efficient solution to the Peg Game.
The search method presented in this work combines ideas
from two different paradigms. One is heuristic search,
a widely used search technique that is normally applied
when a heuristic function that ranks different nodes in the
search tree is available. The other, pattern-based strategy,
is the foundation of human game-playing and so far there
are still areas where it out-scores any machine opponent—
for example, the game of Go.

The main characteristics of the equivalence-class tem-
plates method are summarized as follows:

� It is an informed search; the knowledge about the
problem is encoded in the templates

� It efficiently exploits the representation; due to sym-
metry there are just 4 distinct cases instead of 15

� It is general; the templates do not give an algorithm
that produces the solution, but guide a search in the
game tree



� It is flexible; it does not depend on the search algo-
rithm used and can be integrated in different algo-
rithms

� It exhibits better overall performance; “classical”
heuristic-guided search [4] does not sufficiently re-
duce the search space

Performance improvements are possible through fur-
ther refinement of the actual templates. Each of the tem-
plates needs to capture the essential transformations from
state to state and be kept general enough that it works for
all cases in an equivalence class.

It is our belief that this kind of search strategy could
potentially be of great use for other applications which
operate in domains containing certain properties, such as
a high degree of symmetry. By enabling the computer to
combine pattern matching with its ability of high speed
search, complex domains can be reduced to manageable
size. Non-conventional strategies like genetic algorithms
or neural networks have proven their efficiency in do-
mains where traditional methods failed to perform ade-
quately. The proposed method is a good example of com-
bining established techniques with novel approaches.

Acknowledgements

We would like to thank Caroline Hayes for her advice and
suggestions and Duncan Lawrie for helping us obtain sup-
port from the Department of Computer Science.

References

[1] Patrick Henry Winston, “Artificial Intelligence, Third
Edition,” Addison-Wesley 1992.

[2] Stuart Russel and Peter Norvig, “Artificial Intelli-
gence, A Modern Approach,” Prentice Hall 1995.

[3] D. N. L. Levy and D. F. Beal, “Heuristic Pro-
gramming in Artificial Intelligence,” John Wiley &
Sons 1989.

[4] L. Kanal and V. Kumar, “Search in Artificial Intelli-
gence,” Springer-Verlag 1988.

[5] J. W. H. M. Uiterwijk, H. J. van den Herik and
L. V. Allis, “A Knowledge-Based Approach to
Connect-Four,” 1st London Conference on Computer
Games 1989.

[6] John J. Smeets and Gerard Putter, “Some Experience
with a Self-Learning Computer Program for Play-
ing Draughts,” 1st London Conference on Computer
Games 1989.

[7] Gerald Tesauro, “Neurogammon: A Neural-Network
Backgammon Learning Program,” 1st London Con-
ference on Computer Games 1989.

[8] Greg M. Gupton, “Genetic Learning Algorithm Ap-
plied to the Game of Othello,” 1st London Conference
on Computer Games 1989.

[9] Patrick Henry Winston and Berthold Klaus Paul
Horn, “Lisp, 3rd Edition,” Addison-Wesley 1993.

[10] Guy L. Steele, “Common Lisp the Language, 2nd
edition,” Digital Press 1990.


