
Java Thin Clients Revisited: An Architecture for
Responsive, Live Wireless Applications

Dragos A. Manolescu and George F. Santamarina
Applied Reasoning

10955 Lowell Ave., Suite 500
Overland Park, KS 66210, USA

{dmanolescu,gsanta}@appliedreasoning.com

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and ap-
plication-based systems; D.2.11 [Software]: Software Engineer-
ing—Software Architectures

General Terms
Design

Keywords
Mobile Classic Blend, thin client, thick client, wireless, WAP, HTML,
PDA, PalmOS, J9 VM

1. INTRODUCTION
The current programming model of the Web revolves around ap-

plication servers [5]. The application server architecture offloads
most processing to a server, which hosts the application and pre-
fabricates views (e.g., HTML pages) for the Web browser. Clients
render HTML pages and transmit to the server events correspond-
ing to user actions, such as pressing a button on an HTML form.
They also request new pages from the server and display them.

2. ENVIRONMENT CONSTRAINTS
A successful application for personal wireless devices must deal

with an array of constraints. The first set of constraints pertains
to pocket-sized devices in general: limited processing power and
memory space [6]; reduced screen real estate and limited input ca-
pabilities [7]. Another set of constraints pertains to wireless de-
vices: limited bandwidth;1 disconnected operation; expensive air-
time. While the constraints specific to small devices have been
dealt with in the past, Web-enabled mobile phones are bringing the
second set of issues under the spotlight.

3. WHAT ABOUT WAP?
The above constraints make building Internet applications for

mobile phones a hard problem. Several technologies attempt to
address these challenges. For example, the Wireless Application
Protocol (WAP) provides a suite of markup languages specifically

1Even in a 3G wide area network the wireless bandwidth remains
well below the wired bandwidth, and it will remain that way for the
forseeable future.

Copyright is held by the author/owner.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
ACM 1-58113-626-9/02/0011.

designed for the microbrowsers that run on wireless devices. WAP
version 1 introduced WML, the Wireless Markup Language. The
newly adopted version 2 adds support for the XHTML Mobile Pro-
file markup language [2]. A scripting language called WMLScript
lets applications leverage some of the processing capabilities avail-
able on the client side.

However, despite the new features of WAP 2.0 (including sup-
port for server push via push proxies), these technologies have an
intrinsic flaw as they parallel the current programming model of the
Web too closely. For example, WAP involves rendering complete
pages, and the live update capabilities are nonexisting or cumber-
some. Additionally, users have been reluctant to adopting WAP. So
are there any other alternatives for wireless application developers?

4. WHY THIN CLIENT?
We have designed an architecture that provides developers the

benefits of server-side programming without the limitations of HTML
and WML rendering and lack of live update capabilities. Some re-
searchers have argued that the thick client model will be prevalent
on personal wireless devices [8]. We disagree. Instead, we have
adopted a thin-client architecture. The thick-client model has fun-
damental problems that the thin-client avoids. Here are some of the
benefits of the thin client model:

Lower time to market and development costs:Building software
for personal devices (PDAs) is not the same as building soft-
ware for desktop computers. Client-side development re-
quires specialized programming languages [9], programming
styles [6], and development tools [3, 1]. In contrast, our thin
client approach canminimize and even eliminate client-side
developmentas it places the application on the server.

Lower bug count at delivery: The thick client approach involves
client-server programming. This poses more challenges to
developers than writing all the code in one place. For ex-
ample, the thick client-server involves distributed functional-
ity, which brings into the equation multiple computers, net-
works, and data sharing and synchronization. These factors
increase the operational complexity of client-server software.
The additional complexity translates into higher defect po-
tentials. Capers Jones has found that the defect delivery level
of client-server applications is almost two times larger than
for stand-alone applications [4]. In contrast, the simpler pro-
gramming model of our thin clienttranslates into fewer de-
fectsthan thick clients.

Simpler programming model: The thick client approach requires
designing custom protocols and APIs for each application.



When one side sends a message to the other, there are a wide
variety of responses that can happen. This is error prone. In
contrast, our thin client approachinvolves programming to a
relatively fixed, widget API. This API changes only when the
device adds support for new widgets. Once debugged, de-
velopers can build applications without worrying about bugs
outside the application code.

Better integration with existing infrastructure: Corporations have
invested in wireline technology for their Web-enabled ap-
plications. Thick clients require new applications, leading
to limited reuse and integration problems. In contrast, our
thin client approachpromotes reuse and facilitates integra-
tion with current infrastructure as it leverages the server side
of corporate applications.

Lower administration costs: Software changes in time. Devel-
opers add new functionality or fix security holes. Updating
thick client software generally requires user involvement and
poses security risks. In contrast, our thin client approach al-
lows developers todeploy new applicationsas well asupdate
existing applications seamlesslyas applications reside in a
single location.

Improved application and data security: Some people suggest that
in the future users may replace their general-purpose com-
puters with mobile systems [8]. In fact, this depends on the
type of data they manipulate. Corporations frown on their
employees carrying sensitive enterprise data on mobile de-
vices. In contrast, our thin client approach poseslower se-
curity risksbecause it only contains remote GUIs instead of
storing enterprise data and applications on the device.

However, the idiosyncrasies of wireless connectivity and the lim-
itations of technology employed by current wireless devices make
building wireless thin clients a hard problem.

Application

Proxy
Widgets

Broker

Server

Events

Native
Widgets

Broker

Client

Bidirectional Data Transfer

GUI Events

User Events

Figure 1: The Mobile Classic Blend Architecture

5. MOBILE CLASSIC BLEND
Mobile Classic Blend (MCB) is a unique patent-pending tech-

nology aimed at developers building thin-client applications for
Java-powered personal wireless devices. MCB represents a radi-
cal departure from the increasingly popular way of building thick
clients on portable devices supporting Java 2, Micro Edition (J2ME).

In this demonstration we show how MCB addresses device inde-
pendent programming; software development under the constraints
specific to current wireless technology (devices and connectivity);
client- and server-side extensibility; responsiveness of networked
applications in constrained environment; and server-side push in
a 2G-world. Our approach leverages object-oriented frameworks,
patterns, object serialization, message sending, and current state of
the art in object technology to achieve high performance on a con-
strained platform.

We present a live, server-centric application running on a PalmOS-
powered phone, explain its design, and show what it takes to build
MCB applications. We’ve built the MCB architecture from the
ground up for live, server-centric applications. The architecture re-
volves around high-performance ORBs and a communication pro-
tocol optimized for low-bandwidth and medium-latency networks
(i.e., less than 600 milliseconds round trip time)—see Figure 1.
MCB applications support transparent software updates, server-side
push, wake up, and auto connect over wireless connections.

MCB is a version of Classic Blend (CB) that leverages IBM’s
J9 VM and PalmOS on the client, and J2SE/J2EE on the server.
MCB accommodates the constraints of current technologies by us-
ing on the client techniques commonly found in high-performance
enterprise servers, as well as techniques specific to small memory
systems.

6. REFERENCES
[1] Borland Software Corporation. jBuilder MobileSet. On the

Web at http://www.borland.com/jbuilder/mobileset/.
[2] Wireless Application Protocol Forum. Wap 2.0 technical

white paper. Available on the Web from
http://www.wapforum.org.

[3] IBM. VisualAge Micro Edition. On the Web at
http://www.embedded.oti.com/.

[4] Capers Jones.Applied Software Measurement. McGraw-Hill,
New York, NY, second edition, 1997.

[5] Dragos A. Manolescu and Adrian E. Kunzle. Several patterns
for ebusiness applications. InProc. 8th Conference on Pattern
Languages of Programs, Monticello, IL, September 2001. The
Hillside Group, Inc. Available on the Web from
http://micro-workflow.com/PDF/ebp.pdf.

[6] James Noble and Charles Weir.Small Memory Software:
Patterns for Systems with Limited Memory. Software Patterns
Series. Addison-Wesley, 2000.

[7] James Noble and Charles Weir. A window in your pocket:
Some small patterns for user interfaces. InProc. European
Pattern Languages of Programs. The Hillside Group, Inc.,
2001.

[8] Thad Starner. Thick clients for personal wireless devices.
IEEE Computer, 35(1):133–135, January 2002.

[9] Java 2 platform, micro edition. On the Web at
http://java.sun.com/j2me/.

http://www.borland.com/jbuilder/mobileset/
http://www.wapforum.org
http://www.embedded.oti.com/
http://micro-workflow.com/PDF/ebp.pdf
http://java.sun.com/j2me/

	Introduction
	Environment Constraints
	What About WAP?
	Why Thin Client?
	Mobile Classic Blend
	REFERENCES -9pt 

