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Technology determines the types and amounts of information we can access. Currently, a large fraction
of information originates in silicon. Cheap, fast chips and smart algorithms are helping digital data process-
ing take over all sorts of information processing. Consequently, the volume of digital data surrounding us
increases continuously.

However, an information-centric society has additional requirements besides the availability and capa-
bility to process digital data. We should also be able to find the pieces of information relevant to a particular
problem. Having the answer to a question but not being able to find it is equivalent to not having it at all. The
increased volumes of information and the wide variety of data types make finding information a challenging
task.

Current searching methods and algorithms are based on assumptions about technology and goals that
seemed reasonable before the widespread use of computers. However, these assumptions no longer hold in
the context of information retrieval systems. “Good ideas do not always scale.” [Kay]

This chapter presents a pattern that provides a proven solution for searching large volumes of informa-
tion. The pattern originated in the information retrieval domain. However, information retrieval has expand-
ed into other fields like office automation, genome databases, fingerprint identification, medical imaging,
data mining, multimedia, etc. Since the pattern works with any kind of data, it is applicable in many other
domains. You will see examples from text searching, telecommunications, stock prices, medical imaging
and trademark symbols.

The key idea of the pattern is to map from a large, complex problem space into a small, simple feature
space. The mapping represents the creative part of the solution. Every type of application uses a different
kind mapping. Mapping into the feature space is also the hard part of this pattern.

Traditional searching algorithms are not viable for problems typical to the information retrieval domain.
Since they were designed for exact matching, their use for similarity search is cumbersome. In contrast,
feature extraction provides an elegant and efficient alternative. With information retrieval expanding into
other fields, this pattern is applicable in a wide range of applications.

1 Context

Digital libraries handle large amounts of information. They offer access to collections of documents repre-
sented in electronic format. According to Bruce Schatz [Sch97]:

A digital library enables users to interact effectively with information distributed across a net-
work. These network information systems support search and display of items from organized
collections.

An increasing number of users discover online information retrieval and interactive searches. Once
comfortable with the new tools, they demand new materials to be available in digital libraries. This requires
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obtaining digital representations of documents. Since the process is getting cheaper and faster, extending a
digital library is easy.

Obviously this increase in the amount of information has a strong impact on the supporting software.
Consider for example the case of searching—text retrieval. This is a simple but basic operation for digital
libraries. Several different algorithms are available for traditional text retrieval [FO95]. However, they are
not always applicable in the context of digital libraries. For example, full text scanning, regular expression
searching and signature files have bad response times for large amounts of information. Inversion (the
method used by many Web search engines) is scalable but has a large storage overhead (up to 300%), and
index updates are expensive.

Large volumes of data are not the only challenging characteristic typical to digital libraries. Unlike
conventional database systems, digital library users usually perform similarity searches (i.e., approximate)
instead of exact searches. A typical query for a database user may be “what is the title of the book with
the ISBN 0201633612.” In contrast, in a digital library system, a user can ask “list in decreasing order of
similarity all books that are on the same subject as the one with ISBN 0201633612.” (Database systems can
also answer such queries provided that an appropriate index structure has been created in advance.) This
corresponds to a query by example. Conventional database systems can handle some approximate searches,
but they were not designed for this purpose.

The emergence of multimedia content within electronic publications raises another issue. One can pro-
vide as a query a digital image and ask for all electronic documents that contain similar pictures, e.g.,
“retrieve the documents which contain images that look like this sunset.” In this case, the challenge is
“understanding” the contents of the image. Digital images (and any other multimedia data for that matter)
are complex data. Although computers are good at representing and manipulating digital representations
of this type of information, decoding their contents is still a research issue. One workaround for this prob-
lem is to have a person annotate each image with a set of keywords. However, manual classification is
time-consuming and potentially error-prone [EBG98]. Therefore, it is only a temporary workaround.

2 Problem

Current applications deal with large amounts of information, similarity searching and complex data. How
does software handle these requirements?

3 Forces

� Information retrieval systems handle large amounts of data. Signature files, inversion or other “tradi-
tional” search algorithms are not viable for applications like digital libraries.

� Similarity searching is useful in many domains. Although relational algebra handles well exact
queries, it is cumbersome for similarity search.

� Multimedia databases contain digital representations of acoustic and visual data. Current software
cannot “understand” the meaning of this complex information.

� Information retrieval systems require small space overhead but also low computational overhead for
queries and insertions.

� Fast response time is important.
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4 Solution

Work with an alternative, simpler representation of data. The representation contains some information that
is unique to each data item. This computation is actually a function. It maps from the problem space into a
feature space. For this reason it is also called a “feature extraction function.”

A typical feature extraction function for text documents is automatic indexing. The function maps
each document into a point in the k-dimensional keyword (or feature) space—k is the number of keywords.
Automatic indexing consists of the following steps [FO95]. First, it removes common words like “and,” “at,”
“the.” Next, it reduces the remaining words to their stem (normalized form). For instance, it reduces both
“computer” and “computation” to “comput.” Then a dictionary of synonyms helps to assign each word-stem
to a “concept class” [Sch97]. (These three steps are also known as preprocessing. Preprocessing extracts
concepts from contents.) Finally, the method builds a vector in keyword space. Each vector element gives
the coordinate in one of the k dimensions and corresponds to a concept class. Two options for computing
the coordinates in the feature space are the following:

� Binary document vectors use only 2 values to indicate the presence or absence of a term.

� Vectors based on weighting functions use values corresponding to term frequency, “specificity,” etc.

Figure 1 illustrates how document indexing maps from document space to 3-dimensional feature space. A
multi-dimensional index structure stores the feature space representation.
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Figure 1. Mapping a document into a 3-dimensional feature space.

Typically, feature extraction maps from a larger problem space into a smaller feature space. Consider
the previous example of document indexing. In document space, one document contains a large number of
words. Searching a collection of documents requires many string matching operations. However, in keyword
space, documents correspond to multi-dimensional vectors. With this pattern, searching for documents that
contain a given set of keywords involves computing some linear expressions (see below). This is much
faster than string matching. Therefore, feature extraction enables scalable solutions for problems that deal
with large amounts of information.

In the feature space, similarity searching corresponds to operations on normalized vectors. A popular
and intuitive choice for similarity measure is the cosine function. 1 For example, in the 3-dimensional s-
pace from Figure 2, ~b is more similar to ~a than ~c. In terms of the two angles α and β, α < β and thus

1Many other choices are available. For instance, asymmetric functions are preferred for digital library applications.
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cosα > cosβ. In this case, the cosine value is easily computed from the inner product—see “Implementa-
tion Notes” (Section 6). Consequently, matching a query in the feature space can be represented by linear
expressions [Kan94]. Moreover, the answers to a query can be ranked in order of similarity. Queries re-
turn only the answers that are above a given threshold. Therefore, feature extraction provides a natural and
low-overhead solution for similarity search.
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Figure 2. Cosine function and vector similarity.

However, using feature extraction for similarity search has its own limitations. Any data items are
similar as long as their representation in the feature space are similar. But this is not necessarily how
humans perceive things. Two reasons for this are the following:

1. The problem space may be ambiguous. Text is a notorious example. Humans handle this problem by
using the surrounding text to establish a context.

2. The feature extraction function is non-injective. Distinct points from problem space can map into the
same point in feature space. More on this issue later.

Domain mappings are a widespread technique in mathematics. Usually they map from a complex domain
into a simpler one—here, complexity refers to the operations within the domain. A well-known example is
the operational method for the solution of differential equations [BS97]. The method consists in going from
a differential equation, by means of an integral transformation, to a transformed equation. The transformed
equation is easier to solve than its differential counterpart. Two possible integral transformations are the
Laplace transform and the z transform.

In a software context, mapping from problem space into feature space also enables computers to manip-
ulate complex information. Digital images are one example. Current image databases employ this pattern to
obtain simplified representations for images. Unlike the typical domain mappings from mathematics, these
simplified representations lose information. They consider only the most significant image features, e.g.,
the low-frequency coefficients of the Fourier transform. Common features for images are color histograms,
textures, shapes or a combination of these. This way, feature extraction enables software systems to process
different types of complex information without “understanding” the contents.

When mapping from a large problem space, feature extraction considers only a few “significant” features
in the feature space, discarding the rest. This truncation yields a non-injective mapping. For example, two
documents can map into the same point in keyword space. However, this does not mean they are identical.
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Figure 3. Insertion and query processing without and with feature extraction. The additional
stages required for feature extraction are shaded.

Since the function is not injective, there is no inverse mapping. Several points in problem space can map into
a single point in the feature space. This property affects all applications that employ this pattern to provide
answers to queries. The solution is to add a post-processing step that filters out the “false alarms.” Since
the typical number of false alarms is small, the post-processing step usually performs a sequential search to
eliminate them.

Besides post-processing, this pattern requires two additional stages:

1. Feature extraction works with the features of the working set of items (documents, images, etc.).
Whenever a new item is added to the data store, the system computes its features (i.e., coordinates in
the feature space). Therefore, each insertion needs this extra step.

2. Another operation that changes is query processing. The fundamental idea of feature extraction is
to perform all computations in a smaller, simpler space. Processing then takes place in this space.
Consequently, answering a query requires computing its representation in the feature space as well.

To summarize, feature extraction complicates insertion and query operations since it requires additional
stages and a data store. These are shown in Figure 3.

Information retrieval (IR) is one of the domains that employs feature extraction extensively. IR has ex-
panded into fields such as office automation, genome databases, fingerprint identification, medical image
management, data mining and multimedia [Kan94]. In many of these applications the objective is to min-
imize response times for different sorts of queries. Performance depends on how fast the system performs
searches in the multidimensional feature space. Therefore, the choice of a spatial access method (SAM)
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is critical. However, this may be challenging. Good unidimensional indexing methods scale exponentially
for high dimensionalities, eventually reducing to sequential scanning [AFS93]. Therefore, they apply on-
ly when a small number of dimensions is sufficient to differentiate between data items. The next section
(“Design decisions”) provides a few alternatives that work well for a larger number of dimensions.

Design decisions

Applying the feature extraction pattern involves three design decisions. This section covers these decisions
and discusses some potential choices.

The creative part of this pattern is obtaining a suitable feature extraction function. This is also the hard
part of the pattern. One of the important requirements for the domains that employ feature extraction is
correctness. A query should return all the qualifying information, without any “misses.” The “false alarms”
due to the non-injective mapping are less of a problem; post-processing (Figure 3) removes them. Howev-
er, a formal proof is required to demonstrate correctness. Alternatively, a domain-specific algorithm may
automatically construct a correct feature-extraction function for a given problem. For example, [FL95] de-
scribes such an algorithm for indexing, data-mining and visualization of traditional and multimedia datasets.
Obviously, the feature extraction function is domain- and problem-dependent.

The Discrete Fourier Transform (DFT) is an example of a feature extraction function. This function
is suitable for pink noise “signals,” whose energy spectrum follows O( f �1). A wide range of data (e.g.,
stock prices, musical scores, etc.) fits this description. Consequently, DFT is usable in many different
domains. This transform has been successfully used for similarity search [AFS93]. Its properties guarantee
the completeness of feature extraction. Since DFT is orthonormal (i.e., distance-preserving), the distance
between two data items in the problem space is the same as the distance between their corresponding points
in the feature space. Therefore, DFT is applicable with any similarity measure that can be expressed as
the Euclidean distance between feature vectors in some feature space. “Known Uses” (Section 7) provides
additional examples of feature extraction functions.

After finding a feature extraction function, we must decide which features to consider further. As ex-
plained before, not all features are used. For example, systems that use DFT keep only a few low-frequency
coefficients. This “lossy” part of the pattern ensures that feature space is smaller than problem space. Decid-
ing on the number of features involves a tradeoff between accuracy and speed. At one extreme, the system
is “lossless” and keeps all features. This ensures no false alarms. However, searching a large (feature) space
is what the pattern is trying to avoid. At the other extreme, only one feature is used. In this case, the de-
generate search in the feature space is fast—it simply returns everything. Post-processing takes a long time
though, since it filters all data items. Therefore, the number of features determines the balance between the
searching time in the feature space and the post-processing time.

The third part of this pattern is choosing a suitable spatial access method. The choice depends on
the number of features—dimensions of the feature space. Many methods are available for indexing low
dimensionality domains—for example, hashtables or B-tree variants. However, as the number of dimen-
sions grows, they degenerate into sequential scanning. R-tree variants (e.g., R *-trees [BKSS90] and SS-
trees [WJ96]) offer good performance for a larger number of dimensions.

To summarize, the feature extraction pattern involves three design decisions:

� Determine the feature extraction function. This is the most challenging part of the pattern.

� Decide what features to consider. This decision determines the balance between the search time and
the post-processing time.

� Choose a spatial access method. This determines how fast the system can search the feature space.
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5 Consequences

Feature extraction provides solutions for important information retrieval problems. First, it enables scalable
solutions for systems that deal with large amounts of information. Second, it provides a natural and low-
overhead solution for similarity search. And finally, it enables software to process different types of complex
information without “understanding” its contents.

The feature extraction pattern has the following benefits (✔) and liabilities (✘):

✔ It can manage large amounts of data. Compared to sequential scanning, applications using this pattern
obtain an increasingly better performance as the volume of data increases [AFS93].

✔ Similarity searching corresponds to vector operations in feature space. These have low computational
overhead and rank the results.

✔ Software can manipulate complex information without having to decode its semantics. This is key for
implementing multimedia databases.

✔ Users can easily refine queries. Once results are available, they mark only those that are relevant.
The system adjusts the original query and performs a new search. If the user’s feedback is consistent,
such queries converge in a few iterations. This mode of operation is also known as “relevance feed-
back” [SB88]. In the feature space, relevance feedback consists of adding the selected vectors to the
query vector.

✘ It is hard to determine feature extraction functions. This is often the subject of doctoral dissertations
or even careers.

✘ Efficient search in the feature space requires spatial access methods. Not all good indexing methods
scale well with the number of dimensions. Obtaining an efficient and scalable multidimensional index
structure is difficult.

✘ Inserting new items and answering queries require additional processing. The architect has to deter-
mine the right balance between the number of features and the post-processing time.

✘ The features require an additional data store. Systems that use feature extraction use two data s-
tores. The “problem space” data store holds the domain-specific entities, e.g., documents, images,
etc. Likewise, the “feature space” data store holds the corresponding features. Figure 3 shows this
situation.

6 Implementation Notes

A possible implementation solution is to group all the feature extraction code into a Manager [Som97]
object. Three properties of the manager pattern make it an excellent candidate for encapsulating feature
extraction. First, the manager has access to all subject instances. Consequently, it is an ideal place to
implement post-processing. Second, within a given domain, its functionality is independent from the subject
classes. Thus, developers can change the implementation of the subject class without affecting the manager.
Finally, other applications that need feature extraction can reuse the manager’s code.

Therefore, the manager object encapsulates feature extraction and indexing. This provides a flexible
solution. For example, you can begin without a fancy spatial access method and concentrate on getting the
feature extraction function right. Once you are satisfied with this part, you can experiment with different
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indexing algorithms, persistence mechanisms, etc. All these changes are transparent for the rest of your
application.

The feature extraction manager acts as a Factory [GHJV95] for subject objects and it is responsible for
their lifecycle. Clients first use the manager to bring new subjects into the system. After “population,” other
clients employ the manager’s services to obtain subject objects in response to queries. When a client does
not need the answers for a query any longer, it asks the manager to destroy the corresponding subjects.

As explained in “Solution” (see Section 4), queries that rely on feature extraction return a variable
number of answers, ranked in order of similarity. Therefore, the manager needs an ordered collection to
store its subjects. Since it has access to all subjects in this collection, another useful service is iteration in
increasing or decreasing order of similarity. The manager can provide this functionality to its clients by
implementing the Iterator [GHJV95] pattern.

Figures 4 and 5 illustrate a possible implementation. Figure 4 depicts the classes, their responsibilities
and collaborations, and Figure 5 shows an UML [FS97] class diagram. Separate Strategy [GHJV95] objects
carry out the information retrieval processing. The mappingStrategy object encapsulates the feature
extraction function. Likewise, the filteringStrategy encapsulates post-processing. This solution is
flexible, since strategy objects are easier to reuse than individual methods. They can also be configured
and plugged in at runtime.2 The Database class is in charge of the database operations dbInsert and
dbSearch—see below. The manager’s next and dispose methods allow clients to iterate over the results
of a similarity search.

Create subject
Dispose subject
Insert

Iterate over subjects

Manager
Client
Mapping strategy
Filtering strategy

Map in feature space

SubjectSearch
Database

Extract features Manager
Subject
Feature set

Mapping Strategy

Discard false alarms Manager
Subject
Feature set

Filtering Strategy
Manager
Subject
Feature set

Insert
Search

Database

Figure 4. Class responsibilities and collaborations.

Figure 6 shows how a client adds a new subject to the information retrieval system:

� The Client sends the insert message to the Manager with the Subject object as the argument.

� The Manager object responds by sending the irMapSubject message to itself. This returns a vector
that represents the subject object in the feature space.

� Finally, the Manager sends the dbInsert message. This updates the data store index (if any) and adds
the Subject object and its feature vector to the appropriate data stores.

Figure 7 provides an example for a query operation:
2Sometimes, dynamic configuration is a requirement. Some systems use several feature sets to answer a query. See “Known

Uses” (Section 7) for an example.

8



Manager

+insert(aSubject : Subject)
+search(aSubject : Subject) : int
+next() : Subject
+dispose()
+irMapSubject()
+irFilter()
+dbInsert()
+dbSearch()

-_mappingStrategy : MappingStrategy
-_filteringStrategy : FilteringStrategy

Database

+dbInsert(aSubject : Subject, aFeatureSet : FeatureSet)
+dbSearch(aFeatureSet : FeatureSet) : FeatureSet

MappingStrategy

+execute()

FilteringStrategy

+execute()

Figure 5. The manager and its collaborating objects. The attributes for the Database,
MappingStrategy and FilteringStrategy classes are not shown.

Subject Client Manager

insert

irMapSubject

dbInsert

Figure 6. Insert sequence diagram.
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� A Client sends the search message to the Manager and passes a query as the argument.

� The Manager responds by sending the irMapQuery message to itself. This maps the query document
into the feature space and returns its corresponding vector.

� Next the Manager sends the dbSearch message. This message involves a similarity function to per-
form the search in the feature space. For example, the cosine function can be used to determine the
similarity between two vectors. This is easily computed from the inner product of the two vectors—
see also Figure 2:

cosα =
~a �~b

j~aj j~bj
;

where j~aj and j~bj are the vector norms. In Cartesian coordinates this corresponds to a linear expression,
since

~a �~b = axbx+ayby+azbz

� Once the answers are available, the irFilter message performs post-processing and discards all false
alarms. For the sequence diagram illustrated in Figure 7, irFilter leaves 3 matches.

� The Manager creates the corresponding Subject objects.

� The Client iterates through these subjects by sending the next message to the Manager. This mes-
sage returns one Subject object for each invocation.

� The Client sends the dispose message to the Manager whenever it does not need the subjects any
longer.

� Finally, the Manager retires each Subject by sending it the dispose message.

In Figures 6 and 7, all messages that implement feature extraction are prefixed with ir. Similarly,
messages that involve database operations are prefixed with db. All these operations are localized within the
Manager object. You can start with a traditional database implementation (only dbInsert and dbSearch)
and add feature extraction later, e.g., when the size of the database starts to cause scalability problems. This
addition will require the following changes:

1. Implement the irMapQuery, irFilter (Figure 7) and irMapSubject (Figure 6) methods. These
delegate to the 2 IR strategies—Figures 4 and 5.

2. Modify dbSearch (Figure 7) to use the similarity function. For example, in SQL this translates into
replacing the WHERE clause with a call to a stored procedure that computes the cosine value.

“Related Patterns” (Section 8) lists other well-known patterns that may be useful when implementing
feature extraction.

10



Client Manager Subject1 Subject2 Subject3

search

irMapQuery

dbSearch

irFilter

new
new
new

next

dispose
dispose
dispose
dispose

Figure 7. Query sequence diagram. The messages sent between next and dispose are not
shown.

6.1 A Scenario

This section illustrates how these pieces fit together with a simple scenario. Since digital libraries or multi-
media databases may seem exotic, this scenario considers a more familiar domain.

Professional recruiters assist companies to find matches for their openings. A company looking for new
employees provides the recruiter a “wish-list.” The list contains some qualifications the company is looking
for but is not exhaustive. Then the recruiter uses the list to query her database. This query returns all the
people within the database that satisfy the search criteria. Since this type of application requires a similarity
search, it is a good candidate for feature extraction.

To use feature extraction, the recruiter begins by studying several wish-lists to get an idea of what com-
panies are looking for. The objective is to decide what are the key characteristics that differentiate potential
candidates, from the employer’s perspective. These are the “features.” For this example, let’s assume that
they are knowledge of 3 programming languages (C, Smalltalk and Java) and a modeling language (UML).
Therefore, the feature space has four dimensions. Every resumé will correspond to a point in this space.

In Figures 6 and 7 this corresponds to deciding that:

➜ irMapSubject and irMapQuery map into a 4-dimensional space; and

➜ dbInsert and dbSearch use a 4-dimensional indexing algorithm.

In this case, extracting features is easy. Each resumé is scanned and when any of these four languages is
found, its corresponding coordinate is set to 1. For example, if Joe lists in his resumé Ada, C, Fortran, and
Smalltalk, the corresponding vector is~vJoe = (1;1;0;0). The information about Ada and Fortran is lost.

Therefore, irMapSubject from Figure 6 performs a full text search for these four keywords.
Once it computes the feature vector, dbInsert stores it in the database along with its corre-
sponding resumé.
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After all resumés are mapped into the feature space, the recruiter is ready to use this system. Let’s
assume that a company has an opening for someone who knows Smalltalk (3+ years experience), Java and
UML. In the feature space, this query corresponds to the vector~vquery = (0;1;1;1). Note that the experience
requirement does not have a corresponding feature and therefore is lost.

The search message from Figure 7 has the supplied wish list as a parameter. Next, irMapQuery
maps this query into the feature space and obtains~vquery.

A search computes the similarity between the query and all the other vectors in the database. Only
the ones that are above a given threshold are returned. Assume that they are (in this order) Adam with
(1;1;1;1), Bob with (0;1;1;1), Clark with (0;1;1;1) and Donna with (0;1;1;0). Adam, Bob and Clark
are exact matches for the query vector and would have been found by a traditional database system as well.
However, while Donna’s vector does not have the UML component, the similarity function is above the
threshold and therefore she is also a match. In a traditional database system, this sort of matching requires a
complex boolean expression. Feature extraction provides a more elegant solution. Here, similarity matching
is essential, since the “wish-list” is not carved in stone. For example, if Donna is proficient with OMT and
her other credentials are better than the others, she will probably get an offer.

In Figure 7, this corresponds to the dbSearch message. dbSearch computes the similarity
between the query vector and all the other vectors stored in the database.

Post-processing compares the original query with the resumés of each potential candidate and returns
only the ones that meet the experience requirement as well.

The irFilter message from Figure 7 implements post-processing. In this case, it does a full
text search in the 4 resumés returned by dbSearch and discards Bob’s resume since it does not
satisfy the experience requirement. Once irFilter completes, the manager creates a Subject
object for each match. Clients send the next message to iterate through these objects.

Therefore, instead of comparing all the resumés with the original query, feature extraction maps this
problem into a four-dimensional space where the solution is simpler. This returns all qualifying answers
plus a few false alarms. Post-processing performs a full text scan only on these answers and discards the
false alarms.

6.2 Sample Code

The following code fragments illustrate how an image retrieval system employs feature extraction. This
code has been used in a Smalltalk implementation of the MARS3system [ORC+97].

The addImage: method adds new images in the system. It corresponds to the situation illustrated
in Figure 6. First the addImage: method computes all features of the image in the newImageFeatures
variable. Next, it updates the index imageRepresentationSet with the image identifier, its file name and
the computed features.

3At the time of this writing, a working demo of the MARS system was available on the Web at
http://jadzia.ifp.uiuc.edu:8000/.
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ImageDatabase>>addImage: anImgFilename
| newImageId newImageFeatures newImageRepresentation |

newImageFeatures := ImageFeatures extractFeaturesFromImageFile: anImgFilename
withTextureNormalizer: textureNormalizer
withDfTable: dfTable.

newImageRepresentation := ImageRepresentation representImageWithId: newImageId
withFilename: anImgFilename
withFeatures: newImageFeatures.

imageRepresentationSet addLast: newImageRepresentation.

In this application, feature extraction consists of color histogram, color layout and texture information.
The code fragment that does feature extraction follows. Each type of feature is extracted in one of the
variables colorHistogram, colorLayout and texture.

ImageFeatures>>extractFeaturesFromImageFile: aString
withTextureNormalizer: aTextureNormalizer withDfTable: dfTable

| image |

image := ImageReadWriter createImageFromFileNamed: aString.
colorHistogram := ColorHistogram extractFromImage: image histogram: 8 by: 4.
colorLayout := ColorLayout extractFromImage: image grid: 5 by: 5 histogram: 8 by:4.
texture := image extractTexture: aTextureNormalizer.

Extraction of the actual features is delegated to the Image class. The following code shows the imple-
mentation for the color histograms. This type of processing is domain-dependent.

Image>>colorHistogram: aNumber1 by: aNumber2
"returns aNumber1 by aNumber2 color histogram flattened as an array,
saturation being more significant and hue being less significant"
| length area colorhist quantizedhue quantizedsat histindex |
length := aNumber1 * aNumber2.
area := width * height.
colorhist := Array new: length withAll: 0.
self pixelsDo: [:x :y |

quantizedhue := self quantizedHueAtPoint: x @ y levels: aNumber1.
quantizedsat := self quantizedSaturationAtPoint: x @ y levels: aNumber2.
histindex := (quantizedsat - 1) * aNumber1 + quantizedhue.
colorhist increment: histindex.].

ˆ(colorhist collect: [:each | (each / area) asFloat])

Finding answers for a query involves mapping the query in the feature space, finding all the matches and
filtering out the false alarms—see Figure 7. The following code fragment performs the search in the feature
space using a distance function specific to image processing. currBatch is an ordered collection that holds
the matches.
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ImageDatabase>>searchForFeatures: anImageFeatures withWeights: aWeightArray
| index currBatch |
anImageFeatures start.
searchResult initialize.
currBatch := OrderedCollection new.
imageRepresentationSet do: [:each |

searchResult addSearchObject:
(each distance: anImageFeatures withWeights: aWeightArray)].

index := 1.
[index <= ((searchResult size) min: 8)]

whileTrue:
[currBatch add: (searchResult at: index).
index := index + 1.].

ˆcurrBatch

7 Known Uses

Feature extraction is not new. One of its pioneers was Gerald Salton. He employed feature extraction in the
SMART system [Sal69] at Cornell, a long time before the term “digital library” was coined.

Since most of the information currently produced is available in electronic format, many application
domains use feature extraction. These include telecommunications, multimedia, medicine, business, etc.
However, despite its widespread use, few studies document feature extraction per se. Table 1 summarizes
the domains and the feature extraction functions for the examples presented in the remainder of this section.

Domain Feature extraction function Sample query

Telecommunications Singular Value Decomposition What was the amount of sales to
ACME, Inc. on August 16th, 1997?

Finance n�point Discrete Fourier Trans-
form

Find companies that have sales pat-
terns similar to ACME, Inc.

Medical imaging Shape size, roundness, orientation,
distance and relative position

Which X-rays are similar to Bob’s X-
ray?

Trademark imaging Image aspect ratio, circularity,
transparency, relative area, right-
angleness, sharpness, complexity,
directedness and straightness

Is ACME’s symbol sufficiently simi-
lar to any other trademark symbols to
cause confusion?

Table 1. Examples of feature extraction functions from several domains.

1. The authors of [KJF97] use feature extraction to perform ad-hoc queries on large datasets of time
sequences. The data consists of customer calling patterns from AT&T and is in the order of hundreds
of gigabytes. Calling patterns are stored in a matrix where each element has a numeric value. The
rows correspond to customers (in the order of hundreds of thousands) and the columns correspond to
days (in the order of hundreds).

In this case, the problem is the compression of a matrix which consists of time sequences, while main-
taining “random access.” Generic compression algorithms (e.g., Lempel-Ziv-Huffman, etc.) achieve
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good compression ratios. However, queries do not work on compressed data and require decompres-
sion. This is not viable for the amounts of data corresponding to calling patterns.

Feature extraction avoids the need for decompression. The function for feature extraction is sin-
gular value decomposition (SVD). This truncates the original matrix by keeping only the principal
components of each row and achieves a 40:1 compression ratio. Therefore, SVD maps the large cus-
tomer calling pattern matrix into a smaller matrix in the feature space. The compressed format is lossy
but supports queries on specific cells of the data matrix, as well as aggregate queries. For example, a
query on a specific cell is “What was the amount of sales to ACME, Inc. on August 16th, 1997?” The
method yields an average of less than 5% error in any data value.

2. Large amounts of data are also typical in the financial domain. Feature extraction provides a fast way
for searching stock prices [FRM94] and is useful for any other time-series databases (e.g., weather,
geological, environmental, astrophysical or DNA data).

The problem here is finding a fast method for locating sub-sequences in time-series databases. The
system needs to answer queries like “Find companies that have sales patterns similar to ACME, Inc.”
Sequential scanning is not viable for several reasons. First, it does not scale for large amounts of data.
Second, it has a large space overhead since each search requires the availability of the entire time
sequence.

Feature extraction provides a fast and dynamic solution. In this case, the feature extraction function
is an n-point Discrete Fourier Transform (DFT). This maps each time-series into a trace in a multi-
dimensional feature space. Since the method considers only a few low-frequency coefficients, queries
return a superset of the actual results. However, post-processing eliminates all “false alarms.” The
space overhead is small, and the response times are orders of magnitude faster than a sequential scan.

3. Besides handling large amounts of data, feature extraction is also applicable for software systems
that manipulate complex information. Digital images are a typical example. Computers are good at
manipulating the basic image components like luminance and chrominance. However, decoding the
semantics of the information contained within an image (its contents) is still a research issue.

Petrakis and Faloutsos use this pattern for similarity searching in image databases [PF97]. The prob-
lem is to support queries by image content for a database of medical images. A typical query is “Find
all X-rays that are similar to Bob’s X-ray.” This problem has the following requirements. First, it
needs to be accurate. The results of a query must return all qualifying images. Second, query formu-
lation must be flexible and convenient. The user should be able to specify queries by example, through
a GUI. Finally, response times and scalability are important. Performance must remain consistently
better than sequential scanning as the size of the database grows.

The system represents image content by attributed relational graphs holding features of objects and
relationships between them. This representation relies on the (realistic) assumption that a fixed num-
ber of objects are common in many images—e.g., liver, lungs, heart, etc. All these common objects
are “labeled.” For this application, the feature extraction function considers five features for each
labeled object in the image: size, roundness, orientation, distance and relative position. The last
two describe the spatial relationship between two objects. These features are sufficient for medical
purposes. However, the method can handle any other additional features that the domain expert may
want to consider. This approach outperforms sequential scanning and scales well with the size of the
database.

4. Trademark images are important elements of a company’s industrial property. They identify the pro-
ducer of a product or service. To gain legal protection, trademark symbols must be formally registered.
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The patent office has to ensure that all new trademarks are sufficiently distinctive to avoid confusion
with existing marks.

Currently, manual assignment of classification codes is the main method of organizing trademark
image collections. The method typically employs the Vienna classification system, developed by the
World Intellectual Property Organization. The top level of this hierarchy has 28 distinct categories.

Trademark image retrieval has several unique characteristics. First, trademark examiners search for
images by primitive features, e.g., shape. Second, trademark registries hold large collections of images
in electronic format. And finally, in the trademark field, successful retrieval criteria are well-defined.
These characteristics make trademark image retrieval an ideal candidate for content-base image re-
trieval techniques.

The Artisan project (automatic retrieval of trademark images by shape analysis) [EBG98] is intended
to replace the Trademark Image System (Trims), currently in use at the UK Patent Office. This system
needs to answer only one type of query: “given a candidate trademark, is it sufficiently similar to any
existing mark to cause confusion?” After studying how trademark examiners work, the researchers
concluded that shape is the most important characteristic. Other attributes can be neglected. For ex-
ample, color information is discarded, since the images are deliberately registered in black-and-white.
Consequently, Artisan works only with shape features. The feature extraction function considers 9
features organized in two vectors. The boundary shape vector consists of 4 features: aspect ratio,
circularity, transparency and relative area. Likewise, the family characteristics vector consists
of 5 features: right-angleness, sharpness, complexity, directedness and straightness. However,
the authors are still experimenting with alternatives.

8 Related Patterns

� The manager can return Proxy [GHJV95] objects for subjects. This may be useful in circumstances
such as when subjects have large memory footprints or are available on remote databases.

� The pattern is independent from the feature extraction function. Domain experts select any function
that is suitable for some problem, ensuring that it produces correct results. Strategy [GHJV95] objects
can represent various feature extraction functions. This is useful for domains that consider multiple
feature sets. One example is image databases, for which popular feature choices are patterns, colors
and textures.

� Digital library systems are likely to use feature extraction for compound documents which contain
text and multimedia information. In this case, components will probably use the Extension Objec-
t [Gam97] pattern to provide interfaces for information-retrieval operations.
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