
A Scalable Approach to Continuous-Media Processing

Dragos-Anton Manolescu Klara Nahrstedt
Department of Computer Science

1304 W. Springfield Ave., Urbana, IL 61801
fmanolesc,klarag@cs.uiuc.edu

Abstract

Techniques that emphasize software reuse and scalabil-
ity are becoming more important than ever. In this paper we
present a component-based model for continuous-media ap-
plications. Components encapsulate expert knowledge and
facilitate reuse. They provide a toolkit that is used to cre-
ate a wide range of continuous-media applications. Our
model is scalable in several dimensions: media transfor-
mations, number of processors, number of configurations,
media types, and processing and communication require-
ments. The paper is organized as a catalog of four software
patterns. It is our belief that developers and researchers
working on continuous-media applications can benefit from
and apply software patterns as well.

Introduction

Current multimedia systems are complex. They span
many areas (e.g., music, graphics, real-time processing)
and have to scale in several different directions (e.g., num-
ber of processing nodes in a distributed environment, num-
ber of continuous-media streams). Consequently, various
techniques that emphasize reuse (e.g., application frame-
works [1, 5, 9], design patterns [4, 2], software compo-
nents [8]) and provide scalable software solutions are at-
tracting the interest of the industry.

In this paper we present a component-based model ap-
plicable to continuous-media processing. The model is
based on four software patterns that express expert knowl-
edge about software construction. Systems employing these
patterns scale well in several dimensions: (1) media trans-
formations, (2) number of processors, (3) number of data
streams, (4) number of possible configurations, (5) media
types, and (6) processing and communication requirements.
We begin with the media flow architecture which is ex-
tremely suitable for continuous-media processing [15, 17].
In the payloads pattern, we describe a mechanism for
encapsulating different types of information—e.g., qual-

ity of service (QoS) parameters, continuous-media data,
event notifications—within messages. The abstraction in-
creases flexibility and ensures scalability with the number
of streams and media types. In the payload passing proto-
col we discuss several protocols that are available for inter-
module communication. Finally, in control and processing
partitions we organize applications according to the spatial
and temporal requirements of continuous-media.

To the best of our knowledge, this is the first attempt
to create a scalable, reusable architecture for continuous-
media processing based on a catalog of software patterns.
We intend to extend the catalog, hoping that it will prove a
valuable resource for developers and researchers.

1 Media flow architecture

The media flow architecture organizes applications as
a network of processing modules1 that apply a series of
transformations to one or several streams of continuous-
media data. Each processing module takes its input from an
upstream module, performs a simple, generic transforma-
tion (e.g., Huffman coding, arithmetic coding, quantization,
DCT) and passes the results to a downstream module—
Figure 1. Enforcing strict, simple inter-module interfaces
yields a large number of possible combinations that provide
solutions to many problems. For example, JPEG, MPEG–1
and MPEG–2 decoders can be constructed by parameteriz-
ing the architecture with specific algorithms [16].
❖B e n e f i t s The media flow architecture ensures scala-
bility in several dimensions: number of processing modules,
processors, data streams, possible configurations and media
types; and processing requirements. It facilitates the rise
of end-user programming, automation and software compo-
nents and emphasizes reuse at the module level. Users that
have knowledge only about the application domain create
new applications by simply connecting modules, without
performing any programming [10, 17]. Sometimes visual

1In this context, “module” is any processing unit within the application
domain.



Source

File
reader

Syntax decoder+
dequantizer IDCT

Sink

Display Color
conversion

Frame
decoder

Static Dynamic Composition
Composition

Figure 1. A JPEG player following the media
flow architecture.

programming tools or scripting languages [7] assist the cre-
ation of module networks. Because the interaction mecha-
nism between modules is fairly simple, media flow is suit-
able for multimedia frameworks [13].
❖L i a b i l i t i e s Media flow is not a good choice for
applications with dynamic control flow or many feedback
loops. For instances where the overhead of inter-module
communication is too high, a different architectural choice
might be a better solution.

Processing modules do not make any assumptions about
their context and communicate only with other media-
processing modules. Consequently, signaling errors that oc-
cur at the module level is cumbersome and difficult. An er-
ror message is meaningful only when combined with some
knowledge about the network topology—we present one
possible solution in Section 4.
❖D i s c u s s i o n Modules play a key role in media flow
architectures. Applications that follow this pattern mani-
fest an increased degree of modularity. This makes it easy
to distribute the development effort among different groups
(e.g., compression modules could be developed by the data
compression group). Depending on the number of ports and
their types, there are three module types: sources interface
with an input device (e.g., digital video camera) and have
one or more output ports; sinks interface with an output
device (e.g., display) and have one or several input ports;
and filters have both input and output ports—not necessar-
ily only one in each direction—and perform processing on
the information fed into the input port and write it to the
output port.

Inter-module communication is performed by passing
messages through unidirectional input and output ports,
thereby replacing direct calls. Unidirectional ports are not a
limitation. Rather, they increase a component’s autonomy,
such that—provided that there are no feed-back loops—
processing is unaffected by the presence or absence of out-

put connections. Therefore, it is possible to change the out-
put connections at runtime.

To enable interconnectivity between two modules, the
output port of the upstream module and the input port of the
downstream module (shown as sockets in Figure 1) have to
be plug-compatible. Having several port (plug) types limits
the interconnectivity and requires adapters to connect in-
compatible ports.

Specialized filters are more efficient than implementing
their functionality with several generic filters, because of
the reduced communication overhead. However, special-
ization also limits the number of possible configurations
that a filter can be part of. For example, a JPEG decoder
module offers better performance than obtaining the same
functionality by connecting a syntax decoder, dequantizer,
IDCT and color converter. However, in the latter case, the
filters are reusable and can be used for other applications
(e.g., an MPEG decoder).

Good processing modules comply with the following de-
sign guidelines. Filters (1) are designed independently of
their use, and (2) cooperate only by using the output of one
as the input to another. Different applications are imple-
mented by interconnecting basic filters—DCT, IDCT, quan-
tizers, dequantizers, etc. Decoupling filters from a particu-
lar problem increases their reusability and allows applica-
tions to use them as “black boxes.” However, in many cir-
cumstances the black-box approach has performance penal-
ties because it does not take into account context-specific
factors. Good filters balance these two forces.

In the context of continuous-media applications, some
filters maintain logical state—e.g., decoding B-frames from
an MPEG sequence requires the I-frames and P-frames. Fil-
ters without internal state can be replaced while the system
is running. Different implementations of any stateless fil-
ter can be exchanged at runtime to adjust the resource cost
and quality characteristics such that the QoS requirements
are maintained [15]. Consequently, the dynamic compo-
sition of filters allows an application to (1) adjust the re-
source consumption of the system at runtime; and (2) adapt
to different computing and communications environments
as well as changes in resource availability.

Within a network, adjacent performance-critical mod-
ules can be regarded as a composite [4] filter and replaced
with an optimized version that trades flexibility for perfor-
mance. Static composition provides the underlying appli-
cation (e.g., compiler) with enough information to collapse
a sequence of modules into a functionally equivalent prim-
itive module, reducing the overhead of inter-module com-
munication [15]. A good balance between the use of static
and dynamic binding of modules allows for efficient imple-
mentations while maintaining a modular, configurable ar-
chitecture.
❖E x a m p l e s The media-flow architecture is used by



the Presentation Processing Engine (PPE) framework. Pos-
nak et al [17] have used the PPE to build JPEG and MPEG
players. They have reported both design and code reuse.
When using the PPE framework, a media player plug-in for
Netscape required a few lines of Tcl and little domain ex-
pertise. However, reusing the Berkeley MPEG source code
was more difficult, since it required a good understanding
of the existing code and a significantly larger programming
effort and expertise. Their implementations are also com-
petitive with commercial products. The decoding time for a
JPEG frame is within 5% of the time required by the IJG de-
coder. Similarly, the MPEG frame rate is at most 10% lower
than the Berkeley player. This analysis shows that reusable,
high-performance solutions are possible with today’s tech-
nology. Other examples include ActiveMovie [12] and the
Berkeley Continuous-Media Toolkit [7].
❖I m p l e m e n t a t i o n n o t e s This section follows
the guidelines from [15]. Processing modules inherit an
input interface from PushInput and an output interface
from PushOutput—the Push prefix is explained in Sec-
tion 3. PushInput—Figure 2—is an abstract class that
determines the input data type. Subclasses implement the
Put() method to process the input data and pass it down-
stream. PushOutput determines the output data type and
defines methods for dynamic composition—Attach() and
Detach(). Attachment between two modules is abstracted
by the PushPort class. This facilitates establishing one-
to-many connections, in which case PushOutput has to
be modified accordingly. C++ templates parameterize the
classes from Figure 2 by the types of data that enters and
leaves the processing module. The compiler’s type check-
ing system prevents connecting two modules which are not
plug-compatible. Type parameterization—templates—and
function inlining allow developers to implement static com-
position.

Based on these classes, implementing processing mod-
ules is straightforward. Figure 3 shows the skeleton of an
IDCT filter.

2 Payloads

Payloads are messages that are exchanged during inter-
module communication. They encapsulate various types of
information that is sent from one module to another and
ensure a decreased coupling between the message struc-
ture and the communicating entities. If inter-module com-
munication is restricted to message passing, in addition to
continuous-media data (e.g., audio samples, video frames)
payloads also accommodate all types of control information
(e.g., QoS parameters, notification messages).
❖B e n e f i t s Payloads increase the overall flexibility and
permit the addition of new attributes (e.g., priority levels,
support for asynchronous notifications, new QoS parame-

template<class DataType> class PushInput {
public:
virtual ˜PushInput() { };
virtual void Put(DataType &data) =0;

};

template<class DataType> class PushOutput {
public:
virtual ˜PushOutput() { };
virtual void Attach(PushInput<DataType>

*next)
{
_port=new PushPort<DataType>(next); };

virtual void Detach()
{ delete _port; };

protected:
inline void Output(DataType &data) {
_port->Output(data); };

private:
PushPort<DataType> *_port;
};

template<class DataType> class PushPort {
public:
PushPort(PushInput<DataType> *module)
: _module(module) { };

˜PushPort() { };
inline void Output(DataType &data)
{ _module->Put(data); };

protected:
PushInput<DataType> *_module;

};

Figure 2. The PushInput, PushOutput and
PushPort classes.

ters) with minimal changes. They enable applications to
scale with the number of media streams and data types.
The decreased coupling between processing modules and
payload contents facilitates the optimization of the mes-
sage passing mechanism. Transfer mechanisms that require
additional information about messages extract it directly
through a well-defined protocol.

Adding new message types does not require changing the
existing software components which are not interested in
them. For example, in a media flow architecture, filters pass
downstream the messages they do not understand, without
performing any processing—also known as “tunneling.”
❖L i a b i l i t i e s The major liability of this mechanism
is its inefficiency when compared with direct calls. One
way to improve performance is to pack multiple messages
into one container message such that all of them are trans-
ferred in one step. Although this technique has been suc-
cessfully applied in operating systems [3], it is not viable for
continuous-media applications, where typical payloads con-
tain time-sensitive data and have large memory footprints.
Optimized copying techniques—see below—provide better
solutions.
❖D i s c u s s i o n Payloads are composed of two compo-



class IDCT: public PushInput<InBlock>,
public PushOutput<OutBlock> {

public:
IDCT() { };
˜IDCT() { };
void Put(InBlock &iBlock)
{
OutBlock oBlock;
// compute the IDCT
Output(oBlock);

};
};

Figure 3. An IDCT filter.

nents, a descriptor component (header) and a data compo-
nent. Descriptors contain general information about the
payload (e.g., asynchronous notification, priority level), as
well as type-specific parameters (e.g., image size, sample
rate). For continuous-media applications the data compo-
nent is much larger than the descriptor and, if present, the
media type is determined from the descriptor. Usually, pay-
loads corresponding to control messages consist of descrip-
tors only.

In the simplest form, the descriptor component contains
just a tag that identifies the payload type. Another impor-
tant component is the length of contents. For payloads cor-
responding to closed Logical Data Units (LDUs), the length
is known in advance and can be encoded within the descrip-
tor. When payloads correspond to open LDUs, the end of
the content has to be signaled explicitly (i.e., with a spe-
cial control message). In a media flow architecture, when
a source reaches the end of the input stream, it signals this
condition to all filters which are connected to its output(s).
The mechanism is propagated down the filter network until
it reaches the sink.

A distributed application following the media flow archi-
tecture can have its processing modules running on different
processors that communicate over a high speed serial link.
In this case, payloads need to provide serialization and de-
serialization methods to encode them into a reliable byte
stream at the transmitter side and decode them from a byte
stream at the receiver side. Therefore, the payloads pattern
enables media flow architectures to scale with the number
of processors. It also minimizes the effort to distribute an
existing application on several processing nodes.

Continuous-media processing requires transferring pay-
loads between the processing modules of a media-flow ar-
chitecture. Because of the large memory footprints of mul-
timedia data, payload copying is an expensive operation.
Consequently, efficient transfer mechanisms minimize pay-
load copying. Whenever it is not possible to avoid copy-
ing, an optimized technique is employed. Shallow copies
have individual descriptors and share the data components.

However, entities are not allowed to modify the copy. Deep
copies have individual descriptors and data components. To
increase efficiency, they can be implemented as copy-on-
write. The change of ownership is more difficult if the com-
municating modules reside across hardware boundaries.
❖E x a m p l e s Microsoft ActiveMovie [12], one of the
most recent media flow architectures, allows users to play
digital movies and sound encoded in various formats. In
ActiveMovie, payloads are either media samples or QoS
data. Media data originates at the source and is passed
downstream. QoS data provides a means to gracefully adapt
to load differences in the media stream. It is used to send
notification messages from a renderer (sink). All compo-
nents of the architecture recognize a special asynchronous
event which requires graceful flushing of old data, followed
by resynchronization. This pattern is also employed by
the Berkeley continuous-media toolkit [7] and the VuSys-
tem [10].
❖I m p l e m e n t a t i o n n o t e s A flexible implemen-
tation solution is to regard the payload as a composite
message. Concrete classes corresponding to various mes-
sage types are derived from the abstract class Message—
Figure 4—and provide implementations for its interface.
The Payload class is a composite Message that extends the
interface with several descriptor-specific methods. In this
example, each payload has associated with it a priority level
and an asynchronous flag. Clients can subclass Payload to
extend the descriptor-specific interface in a transparent way.

3 Payload passing protocol

Payload passing protocol describes the relationship be-
tween control flow and media flow. This pattern estab-
lishes 3 different protocols for inter-module communica-
tion. In the push protocol, both control flow and media
flow originate at the source. Likewise, in the pull protocol,
control flow originates at the sink. The indirect protocol
employs a shared repository (mailbox) accessible to both
parties.
❖B e n e f i t s This pattern enables applications to scale
across different protocols and delivery mechanisms. Each
protocol is applicable for different communication require-
ments. For example, the first can accommodate asyn-
chronous notifications (e.g., resynchronization messages)
generated by the upstream modules. The second is best
suited for slow sinks (e.g., disks) which cannot process the
continuous-media as fast as the rest of the system. The third
is very efficient for instances where shared memory is avail-
able and allows for processing at different rates.

The protocols avoid the need for dynamic synchroniza-
tion policies by laying out structural rules about how dif-
ferent processing modules may communicate, therefore de-
creasing complexity. Adopting only one protocol ensures



class Message {
public:
Message();
virtual ˜Message();
virtual Serialize() =0;
virtual Deserialize() =0;
/*
Other methods for messages
*/

};

class Payload: public Message {
public:
Payload();
virtual ˜Payload();
// Message interface
virtual Serialize();
virtual Deserialize();
/*
Other methods for messages
*/
// Payload-specific interface
int PriorityLevel() const;
bool IsAsynchronous() const;
/*
Other descriptor-specific methods

*/
// Composite interface
virtual void AddMessage(Message *);
virtual void RemoveMessage(Message *);

private:
int _priorityLevel;
bool _isAsynchronous;
/*
Other descriptor-specific data

*/
vector<Message *> _components;

};

Figure 4. Message and Payload classes.

no deadlock, since no two modules can simultaneously send
messages to each other.

❖L i a b i l i t i e s None of the 3 protocols is perfect. Mixed
solutions that combine the advantages of more than one pro-
tocol are sometimes viable, creating a new protocol. For ex-
ample, the upstream module can use the push protocol until
the downstream module blocks communication. Then the
pull protocol can be used, until the downstream module is
ready to accept other payloads from the receiver.

Having more than one input port complicates control
flow and requires additional policies. Two possible scenar-
ios have been identified in the context of hardware data flow
architectures. In the static model, a filter recomputes its out-
put value each time a new payload is available at an input
port. The dynamic model tags the payloads with context de-
scriptors. A new output value is computed only when pay-
loads with identical tags (context descriptors) are present at
the input ports. The choice between the two models depends
on the application’s requirements. However, the overhead
of payload matching sometimes makes the dynamic model

infeasible.
Some protocols require additional data repositories

(buffers). These have to be able to recognize high-priority
payloads or asynchronous notifications. Section 2 describes
a solution that enables payload identification while main-
taining a decreased coupling between their contents and the
buffers.
❖D i s c u s s i o n For the push protocol, the upstream
module issues a message whenever new values are avail-
able. This mechanism may be implemented as procedure
calls containing new data as arguments, as non-returning
point-to-point messages or broadcasts, as prioritized inter-
rupts, or as continuation-style program jumps.

The protocol is applicable in event-driven contexts,
where the computation—flow—is initiated by an external
event to the source or by a continuous loop in the source
itself.

The upstream module does not know if the other end is
ready to receive or not. To prevent data loss, the down-
stream module employs buffers to queue the incoming pay-
loads. However, buffers (1) require additional scheduling
policies, (2) introduce unpredictable delays and (3) are not
viable if the payloads have large memory footprints.

The push protocol can also use buffers for flow con-
trol [18]. A high water mark limits the amount of payloads
that can be stored in the buffer; the upstream module does
not place data in the queue above this limit. When the queue
exceeds its high water mark, the filter sets a flag and the up-
stream module stops sending data. When it notices this flag
set and the queue drops below a low water mark, the filter
reactivates the upstream module.

For the pull protocol, the downstream module re-
quests information from the upstream module with a pro-
cedure/method call that returns the values as results. This
mechanism can be implemented via a sequential protocol,
may be multi-threaded with other requests on either side,
and may perform in-place updates rather than returning re-
sults.

Payload transfer is initiated by the downstream module.
Consequently, this protocol is applicable in demand-driven
contexts and for instances where the upstream modules op-
erate faster than the receiver.

Because there is no provision for the upstream modules
to trigger a data transfer, pull protocols can not deal with
asynchronous notifications or prioritized payloads.

The indirect protocol requires the availability of a
shared repository that is accessible to the communicating
parties. It can be implemented via transfers to shared mem-
ory which occur at fixed rates, or via polling. Whenever the
upstream module is ready to pass a payload downstream, it
writes it in the shared repository. When ready to process
another input, the downstream module gets a payload from
the repository.



The indirect model is applicable when the communicat-
ing modules process payloads at different rates. Assum-
ing that not all payloads are required by the downstream
module, the upstream module overwrites the contents of the
shared repository before the downstream module reads it.

The performance depends on the nature of the repository.
For systems that use shared memory, this protocol is quite
efficient. However, the shared resource requires the addi-
tional overhead typically associated with synchronization
problems—managing the critical sections. Shared memory
is not necessarily available if the modules are located across
hardware boundaries.
❖E x a m p l e s The payload passing protocol in the
VuSystem [10] has the following requirements: (1) reduced
latency, which is equivalent to no buffering; (2) feed-back to
upstream modules; and (3) no multi-threading (the VuSys-
tem runs as a single-threaded process). Payloads are passed
with one function call and the timing constraints are prop-
agated through back-pressure. By temporarily refusing a
payload, a downstream module slows down upstream pro-
cessing. The mechanism is simple and does not require
multi-threading. Other examples include the Presentation
Processing Engine [17] and the Java Media Framework.
❖I m p l e m e n t a t i o n n o t e s Figure 2 shows a
push mechanism in the context of media flow architectures.
Computation is triggered by calling the Put() method of
the source.

The implementation for a pull mechanism is symmet-
ric. PullOutput—Figure 5—is an abstract class which de-
termines the output data type. Subclasses implement the
Get() method to get the input data from the upstream mod-
ule, process it and return the transformed value. PullInput
determines the input data type, provides the module inter-
connection mechanism and maintains a pointer to the pre-
vious (upstream) module. This time, the PullPort class
encapsulates the attachment between an input port and an
output port.

Figure 6 shows the implementation of the IDCT module
from Figure 3 following the pull model. This time, com-
putation is triggered by invoking the Get() method of the
sink.

4 Processing and control partitions

Multimedia applications have a dual functionality with
divergent requirements. Continuous-media processing has
to take place in a timely manner, according to its soft real-
time deadlines. Control tasks like QoS monitoring, filter
network management and user interaction have more re-
laxed requirements. They emphasize flexibility and ease
of programming, rather than performance. Organizing the
application according to these requirements yields the pro-
cessing and control partitions.

template<class DataType> class PullOutput {
public:
virtual ˜PullOutput() { };
virtual DataType Get() =0;

};

template<class DataType> class PullInput {
public:
virtual ˜PullInput() { };
virtual void Attach(PullOutput<DataType>

*previous)
{
_port=new PullPort<DataType>(previous);

};
virtual void Detach()
{
delete _port;

}
protected:
inline DataType Input() {
return _port->Input(); };

private:
PullPort<DataType> *_port;

};

template<class DataType> class PullPort {
public:
PullPort(PullOutput<DataType> *module)
: _module(module) { };

˜PullPort() { };
inline DataType Input() {
return _module->Get(); };

protected:
PullOutput<DataType> *_module;

};

Figure 5. The PullOutput, PullInput and
PullPort classes.

❖B e n e f i t s Partitioning the application increases mod-
ularity. The processing and control partitions are part of the
same application and the inherent coupling between them
cannot be overlooked. However, they can have different ar-
chitectures and designs. As long as the overhead associated
with inter-partition communication is small, they can even
be implemented in different programming languages [10].

Removing QoS monitoring and control from the process-
ing partition and localizing it within the control partition
increases flexibility and improves cohesion within the con-
trol partition. The separation of processing and control also
enables experimenting with and accommodating new QoS
parameters without disrupting media processing.

The control partition orchestrates the dynamic composi-
tion inside the processing partition. This enables applica-
tions to adapt to various environments and scale with re-
source availability.

Another benefit of application partitioning is that error
handlers can be placed in the control partition. In a me-
dia flow architecture, processing code is organized as filters
which are loosely coupled with other parts of the system.



class IDCT: public PushInput<InBlock>,
public PullOutput<OutBlock> {

public:
UDCT() { };
˜IDCT() { };
OutBlock Get()
{
OutBlock ob;
// compute the IDCT
return ob;

};
};

Figure 6. The IDCT processing module follow-
ing the pull model.

The control partition has additional knowledge about the
application and can interpret the notifications emitted by the
processing code in the global context.

The control partition can be extended with user inter-
faces to obtain visual programming tools. These assist end-
users in creating applications by establishing connections
in the processing partition and do not require any program-
ming expertise.
❖L i a b i l i t i e s The main problem with this organiza-
tion is the overhead associated with the bidirectional inter-
partition communication. However, the typical amounts of
information exchanged between the partitions are small—
the control partition sends control data, while the processing
partition posts event notifications—and the communication
cost is reasonable.
❖D i s c u s s i o n The control partition corresponds to
timing control, QoS monitoring and management and user
interface code. Timing control is employed by a Logi-
cal Time System (LTS) [7]. This is a user configurable
clock that abstracts the time and encapsulates a mapping
from real time to application time. The LTS schedules the
continuous-media processing within the processing parti-
tion. QoS monitoring and management is performed by the
QoS broker [14]. Factoring out the QoS code and localiz-
ing it within this partition facilitates scaling with the num-
ber of QoS parameters. User interface code can be gener-
ated automatically by software tools and has to cover a large
number of possible actions which cannot be determined in
advance [10].

Because it has to handle relatively infrequent events gen-
erated by the processing partition or corresponding to user
actions, performance is not the main issue. Rather, ease of
programming and extensibility are essential requirements.
In media flow architectures, the control partition also ar-
ranges filters to operate cooperatively, without imposing
centralized synchronization control.

The processing partition contains the code that per-
forms media data processing according to the typical re-

quirements for continuous-media applications [19]. This
partition does not take into account any aspects of user in-
teraction and the focus is only on performance (e.g., main-
taining a set of QoS parameters, which are reported to the
control partition). The code is usually subject to instru-
mentation and developers fine-tune the critical parts. Al-
though the size of the processing partition can be smaller
than the control partition (50%-80% of an interactive ap-
plication is devoted to user interface aspects [9]), the code
executes many times a second (e.g., every 33ms for a rate
of 30 frames/second) and most of the running time of an
application is spent here.

The control partition has knowledge of (some of) the in-
ternal representations used by the processing partition and,
when required, translates them into a format understood by
the user (e.g., a graphical representation). Likewise, by
translating in the other direction, users can interact with the
processing partition as well. For example, the control parti-
tion reads a color value from the processing partition (values
denoting RGB or HSV components), converts it to coordi-
nates and displays a cursor on a 2D color map. When the
user makes a selection, it does the reverse conversion and
writes the selected value back to the processing partition.

In multi-threaded systems, the two partitions can be im-
plemented as separate threads (preferably lightweight, to
ensure fast interpartition communication), with different
priorities. For instances where the processing partition per-
forms heavyweight, time-consuming computations, the ap-
plication arranges to use the control wait states to perform
computations for the processing partition.
❖E x a m p l e s The Berkeley parallel MPEG–1 en-
coder [6] is partitioned in a similar way. The control parti-
tion is I/O intensive and consists of “master server” (which
schedules slave processes), “decode server” (which directs
the transfer of encoded frames between slave processes if
decoded frames are used as reference frames) and “com-
bine server” (which concatenates the encoded frames to cre-
ate the output bit-stream). The processing partition is CPU
intensive and consists of “slave processes” which perform
frame encoding. Other examples include ActiveMovie [12],
VuSystem [10] and the prototype from [11].
❖I m p l e m e n t a t i o n n o t e s Inter-partition com-
munication is bidirectional, and the exchange of informa-
tion across the partition boundary is small compared to the
traffic within the processing partition.

The processing partition posts event notifications and re-
sumes execution as soon as the control partition receives
them. This arrangement minimizes the interference be-
tween the two partitions. Figure 7 sketches the implemen-
tation of a simple file reader module. Each time the down-
stream module invokes the Get() method, it returns a char-
acter from the input file stream. When the end of file is
reached, it also sends the EofMsg to the control partition.



class FileReader: public PullOutput<char> {
public:
Random(const char *fName) {
_inputFileStream=new ifstream(fName); };

˜Random() { delete _inputFileStream; };
char Get()
{
char c=_inputFileStream->get();
if (c==EOF)
Post(EofMsg::Instance());

return c;
};

void SetFile(const char *newFName)
{
delete _inputFileStream;
_inputFileStream=new ifstream(newFName);

};
private:
ifstream *_inputFileStream;

};

Figure 7. Inter-partition communication.

The Post() method—implementation not shown—delivers
the message and returns immediately.

The control partition manages and reconfigures the pro-
cessing partition. This is employed by sending control in-
formation to the appropriate processing modules. In the
code example from Figure 7, the control partition invokes
the SetFile() method of the file reader module. Gener-
ally, processing modules have to implement accessors and
mutators for the information that needs to be read or modi-
fied.

Summary

We have presented 4 software patterns for continuous-
media processing. Applications adopting these patterns
reuse expert knowledge and scale well on several dimen-
sions: (1) new media transformations are added by creat-
ing filters that implement them; (2) applications following
the media flow architecture can be distributed on several
processors with minimal modifications; (3) multiple me-
dia streams are supported by establishing connections from
sources to sinks and encapsulating them in payloads; (4)
new applications are obtained by connecting the existing
modules in different ways; (5) adding a new data type re-
quires implementing specific filters or reusing existing fil-
ters that operate on similar data; and (6) dynamic compo-
sition permits adaptation to different environments and re-
source availability.

These patterns are gradually being embraced by the in-
dustry. Their presence within the forthcoming Java Media
Framework demonstrates their validity and confirms them
as recurring solutions that have passed the test of time.

References

[1] P. Ackermann. Design and implementation of on object-
oriented media composition framework. In Proc. Inter-
national Computer Music Conference, Aarhus, September
1994.

[2] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture—A System
of Patterns. John Wiley & Sons, July 1996. ISBN 0-47195-
869-7.

[3] R. H. Campbell, V. Russo, and G. Johnston. Choices:
The Design of a Multiprocessor Operating System. In
Proc. USENIX C++ Workshop, pages 109–123, Santa Fe,
NM, November 1987.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns—Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995. ISBN 0-201-63361-2.

[5] S. J. Gibbs and D. C. Tsichritzis. Multimedia
Programming—Objects, Environments and Frameworks.
Addison-Wesley, 1995. ISBN 0-201-42282-4.

[6] K. L. Gong and L. A. Rowe. Parallel MPEG–1 video encod-
ing. In Proc. Picture Coding Symposium, Sacramento, CA,
September 1994.

[7] M. H. Jackson, J. E. Baldeschwieler, and L. A. Rowe. Berke-
ley Continuous Media Toolkit API. Submitted for publica-
tion, September 1996.

[8] R. E. Johnson. Frameworks=(Components + Patterns). Com-
munications of the ACM, 40(10), October 1997.

[9] T. Lewis, editor. Object-Oriented Application Frameworks.
Manning, 1995. ISBN 1-884777-06-6.

[10] C. J. Lindblad. A programming system for the dynamic
manipulation of temporally sensitive data. Technical Re-
port 637, Massachutes Institute of Technology, August 1994.
Laboratory for Computer Science.

[11] D.-A. Manolescu. Algebraic model and object-oriented ar-
chitecture for hyper-media documents. Master’s thesis, Uni-
versity of Illinois at Urbana-Champaign, 1997.

[12] Microsoft Corporation, Seattle, WA. Active-
Movie Software Development Kit version 1.0.
http://www.microsoft.com/devonly/tech/amov1doc/.

[13] M. Mühlhäuser and J. Gecsey. Services, frameworks, and
paradigms for distributed multimedia applications. IEEE
Multimedia, 3(3), Fall 1996.

[14] K. Nahrstedt and J. M. Smith. The QoS broker. IEEE Multi-
media, 2(1), Spring 1995.

[15] E. J. Posnak, R. G. Lavender, and H. M. Vin. Adaptive
pipeline: an object structural pattern for adaptive applica-
tions. In The 3rd Pattern Languages of Programming con-
ference, Monticello, IL, September 1996.

[16] E. J. Posnak, R. G. Lavender, and H. M. Vin. Presenta-
tion processing mechanisms for adaptive applications. In
Proc. Multimedia Computing and Networking, San Jose, CA,
February 1996.

[17] E. J. Posnak, R. G. Lavender, and H. M. Vin. An adaptive
framework for developing multimedia software components.
Communications of the ACM, 40(10), October 1997.

[18] D. M. Ritchie. A stream input-output system. AT&T Bell
Laboratories Technical Journal, 63(8):1897–1910, October
1984.

[19] R. Steinmetz and K. Nahrstedt. Multimedia: Comput-
ing, Communications & Applications. Prentice Hall, 1995.
ISBN 0-13-324435-0.


