Workflow Enactment with Continuation and Future Objects

Dragos A. Manolescu
dam@micro-workflow.com

ABSTRACT Group (OMG) shows a strong interest in workflow technology from

An increasing number of software developers are turning to work- th?l_ﬁ_bjed con:jmunl_tg '34]' detail f th . .

flow to separate the logic and the control aspects in their appli- IS paper describes in etail some of the mogt |ntgrestlng as-
cations, thus making them more amenable to change. However, inPects of an object-oriented workflo_vv fr_amework written in \fls_,ual-
spite of recent efforts to standardize and provide reusable workflow Work; Smalltalk. _H_owever, as | will .d'S(.:USS later, the technlques_
components, many developers build their own. This is a challeng- €XPained here (originally developed in Lisp and Scheme) are appli-
ing endeavor and involves solving problems which seem incom- cable to an increasing number of languages. Therefore, the contri-

patible with the object paradigm and current object-oriented pro- butions of this paper are reIeyanF outside the Smalltalk pommunity.
gramming languages. In the context of an object-oriented workflow 1N Paper has two goals. First, it shows one way of building basic

framework, this paper demonstrates a novel approach that resolveyvorkﬂow s_upport Wi_th object_s. At first sight object gnd workflow
this impedance mismatch with techniques drawn from program- technologies seem incompatible: the forrdeemphasizes the flow
ming language theory. This successful cross-pollination narrows of control while the latterexplicitly represents itLikewise, while

the gap between the results of decades of research in programmind"0St object-oriented languages implemegihchronous message
languages and developers working hard to cope with change. ends workflow involvesasynchronous processingThis paper
provides a solution to this impedance mismatch. Second, the pa-

. : - per demonstrates that concepts from programming languages (e.g.,
Categones and SUbJeCt Descrlptors continuations, trampolined style, and futures) provide viable solu-

D.1.5 [Software]: Programming TechniquesGbject-oriented Pro- tions in the context of workflow management.

gramming D.3.3 [Software]: Language Constructs and Features— The paper has two parts. The first part begins with a discus-

Classes and objects, Frameworks sion of workflow in the context of object-oriented software devel-
opment, and then introduces micro-workflow, a workflow architec-

General Terms ture aimed at developers. The second part focuses on the design

and implementation of the micro-workflow components providing
basic workflow support. Using these components as a vehicle |
introduce techniques from programming language theory to work-

Design, Languages

Keywords flow management.

Workflow, continuations, trampolined style, future objects, micro- The above structure targets two audiences. The first part of the

workflow. paper aims at developers who are building applications that must
accommodate business changes. Developers not familiar with work-

1. INTRODUCTION flow will learn what workflow is and how they could use it to fa-

Business changes. Software must keep up with change at an af_mhtate change in their applications. Likewise, developers already

. . familiar with workflow will learn how to implement a lightweight
fordable cost. Programmers are currently tackling this challenge on L o
several fronts. From a methodology perspective, they are moving workflov_v core fo_r use V.V'th'n applications. The sec_:ond half c_)f the
towards lightweight, agile methodologies. From a programming paper aims at object-oriented developers who are interested in tech-
. ')) " niques applicable to workflow, but that might appear in other do-
perspective, they are embracing new styles that facilitate Change'mains The workflow architecture presented in the first part pro-
This latter trend has increased (among other things) the importance . : . . P part p
P N . vides the context for introducing them.
of process support within applications in general, and of the sup-
porting technology (i.e., workflow) in particular. The recent adop-
tion of a workflow management facility by the Object Management
2. WHAT IS WORKFLOW?

Despite being around since the 1970s, workflow technology is

Permission to make digital or hard copies of all or part of this work for Still @ fuzzy area to many people. Some wrongfully regard it as a
personal or classroom use is granted without fee provided that copies arenovel idea, while others have very different interpretations of what
not made or distributed for profit or commercial advantage and that copies workflow means.

bear this notice and the full citation on the first page. To copy otherwise, to pDyring the past few years a common workflow terminology and
reput_)lls_h, to pg/st on fservers or to redistribute to lists, requires prior specific standards have been on the agenda of several organizations, includ-
permission ancror a tee. ing the Workflow Management Coalition (WfMC) and the OMG.

OOPSLA'02November 4-8, 2002, Seattle, Washington, USA. . . L
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00. In the context of this paper, workflow coordinates activities per-

formed by variougarticipantsf] towards a business goal—this view from end-user applications to a key ingredient of the “networked
is similar to WfMC's definition of workflow. Coordination involves economy” [37]. Currently workflow lies at the center of enterprise
activity ordering and the interdependencies between them, syn-application architectures. The two characteristics that make work-
chronization with external events, and delegatiorpieticipants. flow a valuable technology for building agile applications are flow-
Examples include the billing process within a telecommunication and domain-independence.
system, or the followup process for newborns with certain predis-
p)cl)sitions. PP P 3.1 Flow-Independence
Let’s consider a short example that corresponds to a simplified Software developers have long recognized the benefits of sepa-
workflow from the medical world—the treatment of strep throat. rating different concerns. For example, data management and user
The strep throat workflow begins with a patient who suspects that interface represent two of the aspects that many applications have
she may have strep and goes to the doctor to seek medical attento deal with. Good developers aim at building software such that
tion. The doctor examines the patient and tests whether she hasvery design decision is encapsulated into a component. This lets
strep throat. If the results are positive, the doctor prescribes a treat-them revisit individual decisions and make changes without affect-
ment. Based on the patient’s medical records, the doctor can treating other parts of the application.
strep throat in two different ways. If the patient is not allergic to Over 20 years ago Kowalski argued that separatingvthet
penicillin (an antibiotic), the doctor prescribes this treatment. Oth- which specifies the “knowledge to be used in solving problems,”
erwise, he prescribes the sulfa drug. Next a nurse takes the pre{from the how, which determines “the problem solving strategies
scription and instructs the patient how to follow the treatment. If by means of which that knowledge is used,” will make programs
the prescription contains penicillin, she also warns the patient aboutmore readily adapted to new problems, thus improving modifia-
the possibility of an allergic reaction to antibiotics. The patient bility [24]. However, most developers intermix these two aspects
goes home and starts taking the pills. Two days after the beginningwithin their software because doing so is intuitive (requiring little
of the treatment the nurse checks with the patient to see whetheranalysis). The intertwined control and logic (referred to as flow-
there have been any improvements. She also reminds the patient talependency in the context of workflow managemgfit [25]) becomes
continue taking the pills even if her condition has improved. Atthe a hindrance when developers change one or the other.
end of the treatment, the nurse checks the state of the patient again. Kowalski recommended that programming languages provide ex-
This workflow involves two participants, the doctor and the nurse. plicit support for the separation of the logic and the control aspects:
They provide medical knowledge and expertise. The dostam-

inesthe patient anghrescribesthe treatment. Likewise, the nurse Computer programs will be more often correct, more
administershe prescription andheckshe patient’s condition. easily improved, and more readily adapted to new prob-

But is this really that different from what happens in an object lems when programming languages separate logic and
system, where programs consist of objects which perform compu- control. (R. Kowalski[24])

tations in response to messages? Here are some of the characteri

tics that set workflow management apart: ?—|owever, programming languages haven't really evolved in this di-

rection. Although aspect-oriented programming (AOP) focuses on
separating cross-cutting concerns (i.e., aspeCts) [22], aspect sys-
tems like Aspect-J don't regard the control flow as an AOP-style
aspect. Software developers looking for ways to separate the flow
o The workflow participants carrying out the activities can be between an application’s objects/components from the application
software (e.g., objects, components, applications) as well as are turning to workflow products like for example Versata Process
people (as in the strep throat example). Some of these activ- Logic Engine [41L] or Drala Workflow Engin€[9].
ities execute asynchronously. As databases and user interface frameworks remove data- and
Ul-dependencies from application code, workflow makes applica-
o Workflow users may want to take control over activity order- tionsflow-independentSoftware developers implement the control
ing of the process as it unfolds. For example, the strep throat aspect of their applications with workflow technology, which re-
patient may develop an allergic reaction, in which case the moves the knowledge of activity sequencing and their interdepen-
workflow doesn’t proceed as above. dencies from application objects. In effect, changing the control no
longer affects the logic (i.e., flow-independence). Additionally, ap-
plication objects can become more reusable since they make fewer
assumptions about the control context in which they operate.
The sketch from Figurf 1 illustrates the key difference between
flow-dependent and flow-independent applications. A flow-depen-
e Workflow users can monitor the progress of the entire pro- dent application scatters the control among the objects implement-

cess. Knowing who is doing what at any moment helps with ing the logic. Changing one aspect typically impacts the other. In
resource allocation. contrast, a flow-independent application makes a clear separation

between its control and logic, organizing the workflow and appli-
) cation objects into two tler_s. This separation of concerns fauhtate_:s
3. WHY_ WORKF_LOW : changes in either tier and improves reuse. Workflow experts predict
~ Workflow is no longer just “some sort of planned document rout- - that the discovery of benefits of flow-independence will foster the
ing” [85]. Workflow technology and process support has shifted use of workflow management systems for building flexible appli-

IThroughout this document, the terminology of the Workflow catlon§_125]. L

Management Coalition (WfMC) standards appeardinted fonts. Additionally, workflow allows application developers to use work-
2] use the term business process to avoid the confusion with oper-flow-specific features that otherwise would be too expensive to hand
ating system processes. Note, however, that workflow is applicable craft every time they build a new application. Some examples in-
outside the business realm. clude the ability to take over the execution ordering at run time,

o Workflow involves long-running, slow business proceges.
Mortgages, for example, typically last for 15 or 30 years.

e The workflow system saves history information about the
workflows it executes. People have many uses for this in-
formation, including auditing, process analysis and improve-
ment. The workflow system may also use it for recovery.

ApplicationObject1
Logic
ApplicationObject2
' |
Object1 \ > Application
Object2 N ‘
L= Application objects WorkflowObject1| [WorkflowObject2
Application mix logic and ‘
P /control Control
—WorkflowObject3[-
-/

Figure 1: Flow-dependent (left) and flow-independent (right) applications.

or the ability to know the current state of the process (in workflow cations for which they have been tailored. For example, Muth and
parlance these are known as manual intervention and monitoring). colleagues[j31] observe that “most workflow management systems,
. both products and research prototypes, are rather monolithic and
3.2 Domain-Independence aim at providing full fledged support for the widest possible appli-
The partitioning typical of flow-independent applications (Fig- cation spectrum.” Additionally, current workflow systems are hard
ure[l, right) keeps the workflow (along with the business process to integrate with other environments.
support that runs it) outside the application domain. Thus apply- To achieve the goals listed above | have designed micro-workflow,
ing workflow to a particular application domain requires providing a new workflow architecture[[26]. Micro-workflow bridges the
components that perform domain-specific work. This characteristic gap between the workflow functionality object-oriented developers
makes workflow technology applicable to a large number of appli- need in their applications and the functionality provided by tradi-
cation domains. tional workflow management systems. The combination of micro-
For example, Jacksof]20] and Georgakopoulos and colleaguies [¥&}rnel and object-oriented architectural stylgs [5], and ideas from
discuss examples from the telecommunications industry. Dinkhoff compositional software reuse solve many of the problems of tra-
and colleague<][7] apply workflow to administrative processes for ditional workflow architectures. The resulting architecture can be
property management. Vossen and We$ke [42] use workflow tech-integrated within object-oriented applications, can be tailored to
nology for geoprocessing applications. McClatchey and colleaftes g#icific domains, and was designed from the ground up to accom-
and Kovaks [[23] employ workflow in the context of the Compact modateorganic growth[d].
Muon Solenoid high energy physics experiment. Yang and Pa- At the focal point of the micro-workflow architecture, a light-
pazoglou [43] identify workflow as part of the reference archi- weightcoreprovides basic workflow functionality, allowing devel-
tecture for interoperable e-commerce applications. Leymann and opers to define and execute workflowglditional componentsn-
Roller [25] discuss the application of workflow technology for soft- plement advanced workflow features like monitoring, history, man-
ware distribution, security management, and business-process-orienral intervention, worklists, federated workflow, persistence, and so
ted systems management. The key point here is that a wide rangeon. This represents a radical departure from the traditional work-

of application domains can benefit from workflow technology. flow architectures. Figurg 2 sketches the structure of the micro-
workflow architecture.
4. THE MICRO-WORKFLOW ARCHITEC- As the topic of this paper lies on the border between workflow
and programming languages, note that the key ideas of this ap-
TURE proach (i.e., lightweight core and organic growth) are in line with

To accommodate the requirements of object-oriented developersrecent research on workflow architecturgs [B0, 16] and trends in
who need workflow functionality within their applications, a work- programming language design:
flow system must[j26]: (1) Allow developers to pick and choose

the workflow features they need; (2) Let them customize existing From now on, a main goal in designing a language

features and add new ones through object and class composition; should be to plan for growth. The language must start

(3) Integrate with custom components, subsystems, and frameworks; small, and the language must grow as the set of users
and (4) Support incremental integration with existing systems and grows. (G. Steelg[38])

applications. However, most workflow products are incompatible

with these requirements. Current workflow systems are heavy- | have implemented the micro-workflow architecture as an object-
weight and package a comprehensive set of features in an all-or-oriented framework in VisualWorks Smalltalk [6], with GemStoné/$ [14]
nothing manner. The narrow purpose design of traditional work- (an object-oriented persistent store) and OpenTalk (a distributed ap-
flow architectures limits their applicability to the types of appli- plication architecture) for persistence and distributipri [26]. The

on data flow, and the control flow emerges as the process
generates new artifacts.

Persistence
History
Monitoring

Federated
workflow
Worklist
Manual
intervention

e Finally, thecommunication-based process modeatentered
around agreements between participants. This model focuses
on how the participants fulfill their commitments and ad-
vance the process.

Additional
Components

The explicit representation of control flow makes an activity-
based process model appropriate for separating the control from the
logic. Micro-workflow uses this process model. The primary con-
cept of the activity-based process model task which is a multi-
entity collaborative activity. A task consists attivities each of
which is an atomic unit of work performed by a workflQwrtici-
pant.

The activity-based model represents workflows with directed graphs
called activity networks One way to organize the networks is to
place activities in the network nodes with the data passed between
activities on the arcs connecting these nodes. Fifure 3 shows a

following sections focus on the core of the micro-workflow frame- Workflow definition consisting of 6 activity nodes. Although con-
work, particularly on the process and execution components (seeceptually some activity nodes use application objects, these are not

Figure[2). The components for advanced workflow features are be-part of the definition.
yond the scope of this paper. Workflow enactment corresponds to workflow execution, i.e., at

run time the workflow system instantiates a workflow definition,
5. THE DESIGN AND IMPLEMENTATION creating aworkflow case. For an activity-based process model, the
workflow enactment mechanism navigates the activity graph pass-
OF THE MICRO-WORKFLOW CORE ing the control flow to nodes according to the workflow definition.
The decomposition into classes typical of object-oriented ap- For example, a sequence node passes the control to its subtrees se-
plications deemphasizes the control flow and distributes it among quentially, in a predefined order (e.g., from left to right). Likewise,
different objects. Thus, the global control flow and behavior are a conditional node passes the control to its unique subtree only if
less visible than in procedural programs. Therefore, one of the the condition associated with it is satisfied. Thus, navigation de-
challenges of building an object-oriented workflow system lies in pends on the types of activity nodes, and the workflow data. The
providing abstractions that maintain an explicit representation of navigation begins in the root node and continues until the enact-
the control flow without violating the principles of good object- ment mechanism completes the workflow, or until the user aborts
oriented design. execution. For example, the execution of the workflow depicted in
One way to implement a workflow system would be to add work- Figure[3 begins with the node labeledquencel and ends with
flow-specific features to a general-purpose programming language.the node labeledrimitive4.
Languages with metaobject protocols like CLOS and Smalltalk are The micro-workflow framework represents each node of the work-
amenable to domain-specific extensiong [21]. However, | have flow definition with an activity object. Several types of activity ob-
adopted a different approach. Instead of changing an existing lan-jects provide a basic set of control structures—primitive, sequence,
guage (and thus creating a dialect), micro-workflow lies above the conditional, repetition, etc. For example, the workflow from Fig-
implementing language (Smalltalk). Although this approach has ure[3 consists of 4 primitives and 2 sequences. As typical of white-
several liabilities (Noble has analyzed its tradeoffs in a different box object-oriented frameworks, developers add new structures through
context [3B]), here its benefits outweigh them. First, the imple- inheritance[[36].
mented system (i.e., workflow) is under programmers’ control. Sec- .
ond, it fosters integrability with existing systems and applications 9.2 Workflow Enactment with Message Sends
(one of the initial goals). Finally, it yields language portability, thus A simple and intuitive way to implement workflow navigation
making the contributions of this paper relevant to object-oriented is through message sends between activity objécts [27]. In the ex-
developers regardless of the language and environment they use. ample from Figurg]3sequencel starts execution by sending the
executeActivity message to its first stepequence2. In turn, this
5.1 The Process Model executes its first steprimitivel by sending it thexecuteActivity
At the core of every workflow system, a process model provides message, and so on.
key process abstractions and their relationships. Workflow users This implementation translates workflow enactment into a chain
define workflows with these abstractions. of executeActivity messages. Each message must preserve the cur-
Most workflow systems use one of the three types of process rent control context; upon its return, program execution should con-
models: activity-, artifact-, or communication-based; a combina- tinue from the point following the message send. Therefore mes-
tion of these (i.e., a hybrid model) is also possible. The models sage sends incur an accumulation of control context until they re-

Figure 2: The micro-workflow architecture

focus on different aspects:

e The activity-based process modgfovides key abstractions
that capture how to coordinate the process activities. It shows
which activities execute as the workflow unfolds in time.

e Theartifact-based process modekcuses on the artifacts that
are created, modified or used by the workflow. The focus is

turn. The diagram from Figur@ 4 shows the sequence of messages
corresponding to the enactment of the workflow example from Fig-
ure[3. The control context corresponding to eagbcuteActivity
message (left to right solid arrow) must be preserved until the mes-
sage returns (right to left dashed arrow). The control context grows
with the number of chained messages, as the navigation moves
from the initialexecuteActivity message.

Sequence1

T

Sequence2 Primitive3 Primitive4

VAR

I
|
|
|
|
Primitive1 Primitive2 I
|
|
|
|
|
|

[
Control tier | I

-— . ¢ e o emms ¢ e o e o e e — .

Logic tier | :

ApplicationObject1| | ApplicationObject2 | | ApplicationObject3 | | ApplicationObject4

Figure 3: Activity network; the sequence nodes execute their children left-to-right. The application objects from the logic tier are
not part of the workflow definition.

Programming languages (Smalltalk for the implementation dis- implementing system’s call mechanism. A separate workflow stack
cussed here) typically preserve the control context on the call stack.can provide this separation; | discussed this solution elsewhere [26].
The context is pushed on the stack just before the control passes tdr'he next section presents an alternative without an explicit work-
the receiver of the message, and popped once the message conflow stack.
pletes execution. In the example from Fig{ire 3 this means that the
executeActivity message sent equencel doesnt return untilits 5.3 Workflow Enactment with Continuation
three steps complete execution. Likewise, dkecuteActivity mes- Objects

sage thatequencel sends to its first stepequence2 doesn't re- The chained message sends of the solution presented in the pre-
turn until the latter’s two steps complete execution. In other words, \ioys section are responsible for the accumulation of control con-
this implementation fires off the enactment mechanism with @ mes- eyt The enactment mechanism presented in this section breaks
sage send thatoesn't return until the workflow completes execu- e chained message sends with continuation objects. As I will dis-
tion. The stack of the implementing language holds the control s |ater, the solutionses continuation objects without language
context throughout workflow execution. o support for continuationsand thus is language-neutral.

In spite of chained messages being quite common in object sys- A continuation represents work that has to be done. Consider the
tems, the enactment mechanism presented here has problems in thge, throat treatment example from Secfipn 2. The first activity of
context of workflow. The problems stem from the tight coupling he workflow involves the doctor, who examines the patient and
between the implemented system (i.e., workflow) and the imple- (egts whether she has strep throat. A continuation corresponding to
menting language. Most programming languages provide only in- {his step is a function that takes one argument and carries out the
direct access tlo the call stack. In other WOt‘dS,. programmers can't remainder of the process—prescribing the treatment depending on
extract or manipulate the control context associated with the Work- e test results and on the patient’s allergies: following up with the
flow. This limitation hinders implementing workflow features like patient; and closing the case. The argument of this function would
recovery and manual changes: be the outcome of the first step—in this case, the test results. Lan-
| guage designers have used continuations to implement interpreters,
backtracking, multi-threading, exceptions, compilation, and opti-
mization [39,[11[12]. Here continuations eliminate the growth of
control context associated with cascaded message sends, and lay
the groundwork for implementing dynamic changes.

o Sometimes workflow users want to take over activity order- The continuation-based enactment mechanism executes the work-
ing, overriding the workflow definition. This requires the flow in discrete steps, each of which corresponds to an activity
ability to manipulate the call records on the stack. object. Instead of executing an action, activity objects build and

return continuation objects. These objects represent a reification

The solution lies in separation, a widely-used design operétion [3].of the processing that should be carried out in each activity node.
This involves building an enactment mechanism that no longer usesFor example, a sequence activity no longer responds ¢aeanite-
the call stack to save the workflow control context; in other words, like message by executing its steps. Instead, it creates a continua-
it factors the management of workflow control context out of the tion object that will carry out the sequential execution of each step

o |fthe computer executing the workflow crashes, the call stac
is gone unless you can save it. This requires the ability to
extract the workflow control context from the programming
language call stack.

Control . Logic
sequence1 sequence2 primitive1 primitive2 primitive3 primitive4 | AppObj1
i i i i i i . i
					'
					*
					I
					.
o o	.				
executeWorkflow T r controlContext(sequence1) .					
S + controlContext(sequence2)					
executeActivity					
exyecuteActivity I					
doSomething .					
L]
controlContext(sequence1) K——=———-A .
executeActivity |
controlContext(sequence1) - (SO — N I I
+ controlContext(sequence2) f |
SpR .
executeActivity |
=== I [T e T T T T T T T T I
executeActivity .
e mm - e e e e |
- |
— — — — — — | L

Figure 4: Activity map navigation through message sends between the activity nodes. ChainexkcuteActivity: messages cause the
growth of the control context. For simplicity, only one application object is shown in the logic tier.

when supplied with a control context. Therefore, continuation ob- In other words, upon sending a message, the sender waits until
jects represent an abstraction of the control context associated withthe receiver processes it and returns. However, synchronous pro-
each activity. Workflow enactment takes place in a loop that iter- cessing is not suitable for workflow. Workflow participants may
ates over continuations and supplies them with the control context. respond to requests asynchronously. Typically this happens when
Developers familiar with design patterns can regard the continua- workflows involve actions from humans, external systems, or ob-
tions as command objects [12]. Command objects also factor out jects/components that are not available continuously. Additionally,
the control, but typically they’re not used in the chained fashion some workflow participants may take a long time to complete pro-
typical of continuation-passing style. cessing. If messages are synchronous, once the enactment mech-

Ganz, Friedman, and Wan@[13] call the above technicam- anism sends a message to an object representing one of these par-
polined style and describe its use for implementing multithread- ticipants, it must wait until the processing completes. To deal with
ing. The trampoline (i.e., a loop) drives the entire computation these circumstances a workflow system must support asynchronous
by bouncing from one continuation to the next. In the context of message sends from the workflow object to the application ob-
micro-workflow, the trampolined style replaces the chain of mes- ject. Since typically the implementing object-oriented language
sage sends with a single message send from the trampoline to theprovides only synchronous messages, this requirement represents
executing activity node. This translates into limiting the amount another obstacle to building a workflow system with object tech-
of control context that the enactment mechanism accumulates as itnology.
navigates the activity map. The diagram from FigQire 5 sketches Micro-workflow supports asynchronous messages with future ob-
this situation for the example workflow from Figufe 3. jects, a technique from concurrent programming langugges|[17, 1,

. 40]. Future objects provide placeholders for objects whose identit
5.4 ASynChFOHOUS Message Sends with Future is éetermined]after tFk)le futurg objects representfng them are createyd.
Objects An asynchronous message returns to the sender immediately, with-

Although most developers building workflow select an object- out waiting for the receiver to complete processing. However, the
oriented language that supports threads, popular languages haveeturn value is a future object instead of the real result of the oper-
minimal support for concurrency. Unlike full-fledged concurrent ation. Once the real result becomes available, it replaces the future
languages19], general-purpose programming languages like Smalklransparently[[32].
talk or Java implement message sends in a synchronous manner. For example, assume that a workflow activity involves the result

trampoline sequencel sequence2 primitive1 primitive2 primitive3 primitive4

T T
| |
| |
| |
| |
| |
| |
| |
| |

—L —L —L —L —L
executeWorkflow T r

g’
continuationWith:

‘ controlContext(trampoline)

é_ _______ J
; continuationWith
‘ controlContext(trampoline)
~ continuationWith: | | |
‘ controlContext(trampoline)
S I R .
continuationWith:
] P P P

continuationWith:

N JE PR PR PR

continuationWith:

Figure 5: Activity map navigation, trampolined style; note the absence of chained message sends. For simplicity, only the objects on
the control tier are shown.

of a long batch job. With synchronous messaging, the enactmentfuture objects require the ability to replace an object with another
mechanism sends a message to an object from the logic tier re-such that all references to the replaced object point to the replace-
questing the batch job. This message starts the job, but it doesn'tment. Second, futures require the ability to trap message sends
return the control to the enactment mechanism until the batch job to the future object and suspend them until the future object is re-
finishes. With asynchronous messaging, the enactment mechanisnplaced. Reflective facilities like the ones available in Smalltalk=80 [10]
receives a future object in response to its request and continues exprovide elegant solutions for both requirements. Alternatives that
ecution. The batch job starts executing in a separate thread; upondon't rely so heavily on reflection but introduce additional objects
its completion, the result object replaces the future returned in its are also viable (e.g. forwarding proxies). I'll present my solution in
place. the context of the activity type that uses futures, in Se

The above mechanism maintains the appearance of synchronoug-irst let's look at the implementation of the trampoline.
message sends. However, what happens if other objects attempt . .
to use a future before it has been replaced with the result object2-5 Implementing Trampolined Workflow En-
returned from the logic tier? Message sends to future objects indi- actment
cate that the workflow has reached a point where it involves objects At the heart of the enactment mechanism, terkflow class
which are not yet available. In response to these messages, fuprovides the loop driving the computation. This class represents
tures suspend the execution within the workflow domain until the

o ' 3 : ;
asynchronously-produced application objects requested to process 1he micro-workflow worklist component also uses the asyn-
the message become available chronous invocation mechanism to add support for human workers.

) - . . . This paper doesn't cover the worklist component; | have discussed
The solution described above involves two tricky aspects. First, j; elsgwﬁere 126]. P

workflow definitions and provides the means to execute them. Pro- place in these continuations, in response todbygyContinuation:
grammers start avorkflow case through sending thexecute mes- message.
sage to an instance of this class. Workflow execution uses a slotted Two parallel class hierarchies provide the functionality required
environment (like Smalltalk’&dentityDictionary) for data flow. The to define and execute workflows. The first hierarchy belongs to the
enactment mechanism provides this environment to each continua-process realmand provides the abstractions for the activity-based
tion as it passes control to it. In turn, the continuation obtains the process model. Developers use instances of these classes to define
domain objects it needs from the environment; some continuations workflows. At the root of this hierarchy, thectivity abstract class
may also extend the environment by adding new slots. In effect, defines the interface used for navigating the workflow definition:
this scheme pushes the data through the workflow.

The executeWith: message implements the trampoline. Each Activity>>continuationWith: k
step processes the continuation at the top of a continuation FIFO “self subclassResponsibility
queue and puts the result (also a continuation) back on the queue.)
The loop exits when it reaches a particular continuation that marks _ The second hierarchy belongs to teactment realnand pro-
that there’s nothing else to do. Here’s the relevant Smalltalk code: vides the continuations that encapsulate activity-specific execution

mechanisms.

Workflow>>executeWith: aContext TheContinuation superclass described in the previous section de-
[k| fines only the trampoline interfacapplyContinuationin:). The fol-
k := self firstContinuation. lowing examples show the implementation of three control struc-
[k shouldStop] whileFalse: [k := self bounce: k with: aContext]. tures (primitive, sequence, and conditional) by specializing this
"k applyContinuationin: aContext class.

Workflow>>bounce: k with: aContext 5.6.1 Primitive
kqueue nextPut: (k applyContinuationin: aContext). A Primitive is an abstraction of a piece of work performed by an
~kqueue next object from the logic tier. Instances of this class handle the exe-

) . . cution of application-specific actions through delegation to appli-

The micro-workflow core uses several types of continuations cor- c4tion objects from the logic tier. They also have the possibility of
responding to each activity type. Their base classtinuation de- pulling Workflow Relevant Data (i.e., application-specific informa-
fines the trampoline interface: tion) into the workflow runtime.

In the process realm, therimitive class holds the information
required to send a message to an application object, crossing the
boundary between logic and control. This consists of the object’s
slot name, the message, its arguments, and the result slot name
(which is optional, to accommodate messages without return val-
ues). In response tmntinuationwith:, the Primitive returns a con-
tinuation of the appropriate type.

Smalltalk.Microworkflow defineClass: #Continuation
superclass: #Core.Object
indexedType: #none
private: false
instanceVariableNames: 'continuation workflow
classinstanceVariableNames: ”
imports: ”

ry: "Workflow-E: ion’ . .)
category: ‘Workflow-Executio Primitive>>continuationWith: k

N o Tk |
>>
ContT:;?ZEbclzzzgg;ng:;zit:i?nIn' aContext rk := k makePrimitiveContinuation.
P y rk

Continuation>>shouldStop subject: _SUbJeCt;)

Afalse selector: selector;

arguments: arguments;
InitialContinuation marks the beginning of the computation. i.e., result: result.

there’s nothing else to do with the context passed to it as the argu- rk

ment ofapplyContinuationin:. It reimplements thahouldStop test o o .

message accordingly. The enactment mechanism introduces an in- " the enactment realm therimitiveContinuation class imple-
stance ofinitialContinuation in the loop when it starts executing a Ments the corresponding execution mechanism. The delegation to
workflow. Once the loop exitsnitialContinuation responds to (the ~ aPPlication objects uses the asynchronous invocation mechanism
final) applyContinuationin: by returning its argument—the slotted ~ @nd thus depends on future objects.

environment for data flow. This represents the return value of the . AS Section[5}4 has mentioned, future objects require the abil-
ity to transparently replace an object with another, and to inter-

trampoline.
-|-hF:3 code of the key messages implementethitiglContinuation cept message sends_,._ _ My im_pleme_ntation of future objects uses
follows: several reflective facilities available in Smalltalk—80. Note, how-
ever, that the implementation described here is otherwise language-
InitialContinuation>>shouldStop independent.
Mrue The replacement of a future object with a result object relies
on Smalltalk’sonewWayBecome: message. The virtual machine re-
InitialContinuation>>applyContinuationin: aContext places the receiver of this message with its argument such that all
~aContext references to the receiver (i.e., future object) point now to the ar-
. . . ument (i.e., return object). Note that a similar mechanism could
5.6 A Process Model with Continuations glso be éupplied by thfe iniplemented system (thus in a language-

Each type of activity node builds and returns a different con- neutral manner) by updating the appropriate slot of the workflow
tinuation to the trampoline. The activity-specific processing takes environment and enforcing a single point of access.

To intercept messages addressed to result objects | have tailored
the message dispatch mechanism offheire class. Instances of o L .
this class have no inherited behavior (in Smalltalk their superclass Note thatPrimitive performs application-specific work whereas
is nil). Consequently, théoesNotUnderstand: mechanism traps the ~ Other types of activity nodes merely coordinate the computation.
messages that require the availability of the result object and delays nerefore Primitive instances can appear only as leaf nodes in the
their processing. The key aspects of this implementation of future activity map.applyContinuationin: returns the caller’s continuation,

AFuture asyncPerform: selector with: arguments on: target

objects follow.

Smalltalk.Microworkflow defineClass: #Future

superclass: nil

indexedType: #none

private: false

instanceVariableNames: 'semaphore ’
classinstanceVariableNames: ”
imports: ”

category: 'Workflow-Support’

Future>>doesNotUnderstand: aMessage

self semaphore wait.
~self perform: aMessage selector withArguments: aMes-

sage arguments

Workflow>>replaceWithWorkflowRelevantData: anObject

|localSemaphore signalsToSend|

localSemaphore := self semaphore.

signalsToSend := self waitingProcesses.

self oneWayBecome: anObject.

signalsToSend timesRepeat: [localSemaphore signal]

Future class>>asyncPerform: aSelector with: arguments on: anOb-

ject

In response to thepplyContinuationin: message, the continu-
ations returned by primitive activity nodes obtain the application

| future |
future := Future new.

[| return |
return := arguments notNil
ifTrue: [anObject perform: aSelector with: arguments]
ifFalse: [anObject perform: aSelector].
future replaceWithWorkflowRelevantData: return]
fork.
~Muture

which is available to all continuation classes as an instance variable
of the Continuation abstract class. This return value provides the
context that requested the application domain action.

5.6.2 Sequence

Sequence represents an activity that has a number of steps, each
of which is another activity. Software developers use instances of
this class to specify a temporal ordering between workflow activi-
ties. The enactment mechanism navigates the steps sequentially.

In the process real@equence is a subclass oActivity that rep-
resents a composit¢ [12], with other activities as its components.
This property is key for the hierarchical decomposition of work-
flows, which allows developers to split a workflow definition into
subworkflows. Subworkflows break down a workflow definition
into pieces that may be reused. At run time the enactment mech-
anism treats the workflow and its subworkflows as a whole—they
all execute as a singheorkflow case.

Sequence preserves the temporal ordering between its steps by
the means of a®rderedCollection. Developers add steps through
theadd: message, in the order in which the enactment mechanism
should execute them. In responsectmtinuationwith:, Sequence
returns aSequenceContinuation initialized with its steps.

Sequence>>add: anActivity
steps add: anActivity

Sequence>>continuationWith: k
| rk |
rk := k makeSequenceContinuation.
rk steps: steps readStream.
~rk

SequenceContinuation represents the sequence control context
in the enactment realm. In responseapplyContinuationin: it re-
turns the continuation of the next step. Once it executes its last
step, applyContinuationin: returns the caller’s continuation—i.e.,
the control context that required the execution of the sequence of
activities.

Object from the workflow environment and send the message in aSequenceContinuation>>app|yContinuation|n; aContext

separate thread, or delegate the asynchronous processingto the

ture class.

Primitive>>applyContinuationin: aContext

steps atEnd
ifTrue: ["self continuation]
ifFalse: [*self continuationForStep: steps next]

| target | ' SequenceContinuation>>continuationForStep: anActivity
target := aContext at: subject. AanActivity continuationWith: self
result isNil

ifTrue: [self asyncExecuteOn: target]
ifFalse: [aContext at: result put: (self asyncExecuteAn-

dReturnFrom: target)].

~self continuation

Primitive>>asyncExecuteOn: target

[arguments isNil
ifTrue: [target perform: selector]
ifFalse: [target perform: selector with: arguments]]
fork

Primitive>>asyncExecuteAndReturnFrom: target

Note that since instances 8&quence are composite activities,
they can't be leaf nodes in the activity map representing the work-
flow definition.

5.6.3 Conditional

A Conditional enables developers to alter the control flow. At run
time instances of this class determine how the enactment mecha-
nism navigates the activity map based Workflow Control Data.

They implement a control structure of the tyfle condition
THEN activityl ELSE activity2.

In the process realm, th@&onditional class holds the information

required to branch based on data from the workflow environment.

This consists of the slot name for tWéorkflow Control Data, and if they want to use micro-workflow in their applications. It also

the activities for the two branches. In responseottinuationWith:, shows language designers what features they should consider for
this activity type returns a properly initializeZbnditionalContinu- new languages.
ation. Trampolined style workflow enactment doesn'’t require language
support for continuations. The continuation objects used by the
Conditional>>continuationWith: k workflow enactment mechanism are in fact command objécts [12].
| rk | As such they rely on polymorphism. Therefore, the micro-workflow
rk := k makeConditionalContinuation. execution component is practical for developers regardless of what
rk object-oriented language they use.
subject: subject; Future objects require some language support. Reflective capa-
thenBranch: self thenBranch; bilities like Smalltalk’'soneWayBecome: provide an elegant way of
elseBranch: self elseBranch. replacing an object with another and updating all references trans-
rk parently. Forwarding proxies can provide a similar mechanism in

a language-neutral manner. However, the ability to intercept mes-
sage sends to future objects requires access to the message send-
ing mechanism of the implementing language. In other words, the
micro-workflow process component requires reflection.

To summarize, developers who want to implement workflow en-
actment with continuation and future objects in a general-purpose
programming language need reflective capabilities. Although re-
flection has been around for many years, popular languages like
Java have started adding the type of reflection capabilities discussed
here only recently (e.g., Java’s dynamic proxies, introduced with
JDK 1.3, let developers create objects that selectively forward or
intercept invocations). Therefore, as language designers continue
to grow and refine the reflective capabilities of their languages, the
above techniques are becoming accessible to a wider audience.

Note that not both branches are required. Whemthg vity?2
branch is missing, the conditional corresponds tt-ancondition
THEN activity control structure (e.g., aguarded command). Like-
wise, when thectivityl branch is missing, the conditional cor-
responds to alUNLESS condition activity control structure.
The branch accessors returNalActivity object if a branch has not
been specified. This is a concretetivity subclass which responds
to continuationWith: by returning the parent continuation.

Conditional>>elseBranch
~elseBranch isNil ifTrue: [NullActivity new] ifFalse: [elseBranch]

Conditional>>thenBranch
~thenBranch isNil ifTrue: [NullActivity new] ifFalse: [thenBranch]

NullActivity>>continuationWith: k 7. CONCLUSION

"k Adapting software to evolving business requirements is hard and
thus expensive. Although people have recognized that flow-indepen-

In the enactment realm theonditionalContinuation fetches the dence—the separation of the logic and control aspects—makes ap-
Workflow Control Data from the runtime and takes one branch or plications easier to modify and change, most programming lan-

the other depending oniits value. Like for other composite activities g,ages do not support it. In fact, with the distribution of control
(e.q., sequ.enc.e),thlsmvolves'bundlng the appropriate continuation among different classes, the object paradigm goes in the oppo-
and returning it to the trampoline. site direction. Therefore, an increasing number of developers have
started to implement the control aspect within their applications
with workflow. As a sign of this trend, workflow has recently been
at the focus of intense attention from the OMG.

Unfortunately, most workflow architectures have been designed
5.7 Summary under different assumptions and are ill-suited for integration within

The enactment mechanism presented above uses continuationgpphcatlons' Consequently, developers who seek lightweight and

. . ; - customizable workflow functionality must hand-craft their own so-
to reify the control flow. Continuation objects abstract the control . L L o s
. . o lutions. This is not trivial. Additionally, several characteristics of
context associated with the activities of a workflow. Programmers

. .) . . . workflow (e.g., explicit representation of control flow and asyn-
can manipulate these objects directly. This makes dealing with long ; . ! . X .
L - o . - chronous processing) seem incompatible with the object paradigm
running jobs feasible, and facilitates implementing the workflow

.) . and with current object-oriented languages. Is there an impedance
features that involve full access to the control context (i.e., history, . : A
mismatch between object and workflow technologies?
recovery, manual changes/ad hoc workflow, etc.).

In this paper I've discussed some of the most interesting aspects
of implementing basic workflow support with object technology. |
6. LANGUAGE REQUIREMENTS haveFi)ntroduceg micro-workflow, alljightweight vdorkflow archi?gc-

The micro-workflow components described in the previous sec- ture. Micro-workflow aims at object-oriented developers and rep-
tions employ techniques typically used in the context of functional resents a radical departure from traditional workflow architectures.
and concurrent programming languages. The enactment mechaMore importantly, I've shown that techniques specific to program-
nism usescontinuation objectgo break chained message sends, ming languages provide answers to the impedance mismatch be-
and thus prevents the growth of control context. Likewise, the pro- tween workflow and objects. Just as continuation and future objects
cess model usefsiture objectsto provide an asynchronous invo- are good for building programming languages, they're also good
cation mechanism on top of synchronous message sends. | havdor implementing workflow enactment. Finally, | have discussed
shown a Smalltalk implementation for these components. Can ob-what kind of language features developers implementing workflow
ject-oriented developers who use other languages leverage thesenight need to look for when they select a language. I've also iden-
techniques? What kind of language features are required to im- tified the kind of features language designers should consider for
plement a micro-workflow architecture? The answer to these ques-new languages aimed at developers building agile software in gen-
tions determines what language features developers should look foreral, and lightweight workflow functionality in particular.

ConditionalContinuation>>applyContinuationin: aContext
"((aContext at: subject) ifTrue: [thenBranch] ifFalse: [elseBranch])
continuationWith: continuation

8. ACKNOWLEDGMENTS

Bill Burdick, Brian Foote, Daniel Friedman, Adrian Kunzle, and

Rich MacDonald have read and commented on drafts of this paper.

| am grateful to them all.

9. REFERENCES

[1] G. A. Agha.Actors—A Model of Concurrent Computation is
Distributed System§he MIT Press, Cambridge,
Massachusetts, 1986.

[2] A. W. Appel. Compiling with ContinuationsgCambridge
University Press, 1992.

[3] L. Bass, P. Clements, and R. Kazm&uftware Architecture
in Practice SEI Series in Software Engineering.
Addison-Wesley, 1998.

[4] F. P. BrooksThe Mythical Man-Month: Essays on Software
Engineering Addison-Wesley, 1995.

[5] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture—A System
of Patterns John Wiley & Sons, July 1996.

[6] Cincom, Inc. Cincom Smalltalk. On the Webfattp: //
Wwww.cincom.com/scripts/smalltalk.dll/index.asp.

[7] G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka.
Entity-Relationship Approach—ER’'94, Business Modelling
and Re-engineeringhapter Business Process Modeling in
the Workflow Management Environmehtu, pages 46—63.
Number 881 in Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[8] A. Dogag, L. Kalinichenko, M. T. Ozsu, and A. Sheth,
editors.Workflow Management Systems and Interoperability
volume 164 oNATO Advanced Science Institutes (ASI),
Series F: Computer and Systems ScienSesinger-Verlag,
August 1998.

[9] Drala Software, Inc. Drala workflow engine. Available from
nttp://www.dralasoft.com/products/workflow/
index_ htmll,

[10] B. Foote and R. E. Johnson. Reflective facilities in
Smalltalk—80. InProceedings of OOPSLA'8ACM, 1989.
[11] D. P. Friedman, M. Wand, and C. T. Hayn&ssentials of
Programming Language3he MIT Press, Cambridge, MA,
second edition, 2001.
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissi@essign
Patterns—Elements of Reusable Object-Oriented Software
Addison-Wesley, 1995.
S. E. Gangz, D. P. Friedman, and M. Wand. Trampolined
style. InProc. International Conference on Functional
Programming pages 18-27, Paris, September 1999. ACM
Press.
GemsStone Systems. GemStone/S Smalltalk Application
Server. On the Web at
nttp://www.gemstone.com/products/s/index.html
D. Georgakopoulos, M. Hornick, and A. Sheth. An overview
of workflow management: From process modeling to
workflow automation infrastructur®istributed and Parallel
Databases, an International Journa&:119-153, 1995.
Available on the Web at
ttp://ttp.gte.com/pub/dom/reports/GEORYSa. S
C. J. HagenA Generic Kernel for Reliable Process Support
PhD thesis, Swiss Federal Institute of Technology, Zirich,
Switzerland, 1999.
R. Halstead, Jr. MultiLISP: A language for concurrent
symbolic computationACM Transactions on Programming
Languages and SystenTs501-538, October 1985.

(13]

(14]

[15]

[16]

(17]

[18] N. Harrison, B. Foote, and H. Rohnert, editdPattern
Languages of Program Design 8oftware Patterns Series.
Addison-Wesley, 2000.

[19] Y. Ishikawa and M. Tokoro. Orient84/k: An object-oriented
concurrent programming language for knowledge
representation, 1987.

[20] M. Jackson and G. TwaddIBusiness Process
Implementation—Building Workflow Systems
Addison-Wesley, 1997. ISBN 0-201-177684.

[21] G. Kiczales and J. des Rivierékne art of the metaobject
protocol MIT Press, Cambridge, MA, USA, 1991.

[22] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
ECOOP '97—Object-Oriented Programming 11th European
Conference, Jyvaskyla, Finlandolume 1241, pages
220-242. Springer-Verlag, New York, NY, 1997.

[23] Z. Kovaks.The Integration of Product Data with Workflow
Management Through a Common Data ModRiD thesis,
Faculty of Computer Studies and Mathematics, University of
the West of England, Bristol, Apr. 1999.

[24] R. Kowalski. Algorithm = Logic + ControlCommunications
of the ACM 22(7):424-436, July 1979.

[25] F. Leymann and D. RolleProduction Workflow—Concepts

and Technique$rentice-Hall, Upper Saddle River, New

Jersey, 2000.

D.-A. ManolescuMicro-Workflow: A Workflow Architecture

Supporting Compositional Object-Oriented Software

DevelopmentPhD thesis, University of lllinois,

Urbana-Champaign, October 2000. Available as Computer

Science Technical Report UIUCDCS-R-2000-2186. On the

Web fromhttp://micro-workflow.com/

D.-A. Manolescu and R. E. Johnson. A micro workflow

framework for compositional object-oriented software

development. OOPSLA'99 Workshop on the Implementation
and Application of Object-Oriented Workflow Management

Systems II, Nov. 1999. Available on the Web from

http://micro-workflow.com/

R. C. Martin, D. Riehle, and F. Buschmann, editdtattern

Languages of Program Design Software Patterns Series.

Addison-Wesley, October 1997.

R. McClatchey, J.-M. L. Goff, N. Baker, W. Harris, and

Z. Kovacs.A Distributed Workflow and Product Data

Management Application for the Construction of Large Scale

Scientific Apparatuspages 18—-34. Volume 164 of Dag

et al. [8], August 1998.

P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum.

Mentor-lite: Integrating light-weight workflow management

systems within business environments (extended abstract),

October 1998. Available on the Web from

http://www—dbs.cs.uni-sb.de/~mlite/.

P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum.

Workflow history management in virtual enterprises using a

light-weight workflow management system.Rnoc. 9th

International Workshop on Research Issues in Data

Engineering Sydney, Australia, March 1999. Available on

the Web fromhttp://www—dbs.cs.uni-sb.de/~mlite/.

[32] J. Noble. Arguments and resul®e Computer Journal
43(6):439-450, July 2000.

[33] J. Noble.Prototype-based Object Systechapter 5. In
Harrison et al.[[18], 2000.

[26]

[27]

(28]

[29]

[30]

[31]

http://www.cincom.com/scripts/smalltalk.dll/index.asp
http://www.cincom.com/scripts/smalltalk.dll/index.asp
http://www.dralasoft.com/products/workflow/index.html
http://www.dralasoft.com/products/workflow/index.html
http://www.gemstone.com/products/s/index.html
ftp://ftp.gte.com/pub/dom/reports/GEOR95a.ps
http://micro-workflow.com/
http://micro-workflow.com/
http://www-dbs.cs.uni-sb.de/~mlite/
http://www-dbs.cs.uni-sb.de/~mlite/

[34] Workflow management facility specification. OMG
Document Number bom/98-03-01, 1998. Available on the
Web at
ttp://ftp.omg.org/pub/docs/bom/98-U3-0UL.pdE.

[35] C. Petrie and S. Sarin. Controlling the flo&EE Internet
Computing 4(3):34-36, May—June 2000.

[36] D. Roberts and R. Johnsdavolving Frameworks—A
Pattern Language for Developing Object -Oriented
Frameworks chapter 26. In Martin et al[[28], October 1997.

[37] A. P. Sheth, W. van der Aalst, and I. B. Arpinar. Processes
driving the networked economlfEEE Concurrencypages
18-31, July—September 1999.

[38] G. L. Steele. Growing a language.Addendum to the 1998
proceedings of the conference on Object-oriented
Programming, Systems, Languages, and Applicatiiesv
York, NY, 1998. ACM Press.

[39] G. L. Steele and G. J. Sussman. Lambda—the ultimate
imperative. MIT Al Memo No. 353, March 1976.

[40] K. Taura, S. Matsuoka, and A. Yonezawa. ABCL/f: A
future-based polymorphic typed concurrent object-oriented
language—its design and implementationPhoceedings of
the DIMACS workshop on Specification of Parallel
Algorithms 1994.

[41] Versata, Inc. Versata process logic engine. Available from
http://www.versata.com/products/inSuite/logic.
addon.htmll,

[42] G. Vossen and M. Wesk@&he WASA Approach to Workflow
Management for Scientific Applicationzages 145-164.
Volume 164 of D@ac et al. [[B], August 1998.

[43] J. Yang and M. P. Papazoglou. Interoperation support for
electronic business. 43(6):39-47, June 2000.

ftp://ftp.omg.org/pub/docs/bom/98-03-01.pdf
http://www.versata.com/products/inSuite/logic.addon.html
http://www.versata.com/products/inSuite/logic.addon.html

	Introduction
	What is Workflow?
	Why Workflow?
	Flow-Independence
	Domain-Independence

	The Micro-Workflow Architecture
	The Design and Implementation of the Micro-Workflow Core
	The Process Model
	Workflow Enactment with Message Sends
	Workflow Enactment with Continuation Objects
	Asynchronous Message Sends with Future Objects
	Implementing Trampolined Workflow Enactment
	A Process Model with Continuations
	Primitive
	Sequence
	Conditional

	Summary

	Language Requirements
	Conclusion
	Acknowledgments
	REFERENCES -9pt

